CFP last date
20 February 2025
Reseach Article

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

Published on None 2011 by S.K.Anuja, R.Satheesh Kumar
International Conference on VLSI, Communication & Instrumentation
Foundation of Computer Science USA
ICVCI - Number 9
None 2011
Authors: S.K.Anuja, R.Satheesh Kumar

S.K.Anuja, R.Satheesh Kumar . A High Efficient DC-DC Converter with Soft Switching for Stress Reduction. International Conference on VLSI, Communication & Instrumentation. ICVCI, 9 (None 2011), 19-24.

@article{
author = { S.K.Anuja, R.Satheesh Kumar },
title = { A High Efficient DC-DC Converter with Soft Switching for Stress Reduction },
journal = { International Conference on VLSI, Communication & Instrumentation },
issue_date = { None 2011 },
volume = { ICVCI },
number = { 9 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 19-24 },
numpages = 6,
url = { /proceedings/icvci/number9/2694-1380/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on VLSI, Communication & Instrumentation
%A S.K.Anuja
%A R.Satheesh Kumar
%T A High Efficient DC-DC Converter with Soft Switching for Stress Reduction
%J International Conference on VLSI, Communication & Instrumentation
%@ 0975-8887
%V ICVCI
%N 9
%P 19-24
%D 2011
%I International Journal of Computer Applications
Abstract

Soft switching of DC-DC converter is done here. This is obtain good efficiency and to reduce the switching losses. Zero voltage switching reduces the switching losses in the circuit. This is done by using boost converter. Soft-switching characteristic of the proposed converter reduces switching loss of active power switches and raises the conversion efficiency. A voltage step-up function and a continuous input current, a continuous-conduction-mode (CCM) boost converter is used to produce continuous input current and is simple. This method also provides high voltage gain.

References
  1. F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, Sep. 2004.
  2. R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 240–250, Jan. 2008.
  3. C. Wang, Y. Kang, B. Lu, J. Sun, M. Xu, W. Dong, F. C. Lee, and W. C. Tipton, “A high power-density, high efficiency front-end converter for capacitor charging application,” in Proc. IEEE APEC, Mar. 2005, vol. 2, pp. 1258–1264.
  4. Z. Qun and F. C. Lee, “High-efficiency, high step-up DC–DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd.
  5. K. Kobayashi, H. Matsuo, and Y. Sekine, “Novel solar-cell power supply system using a multiple-input DC–DC converter,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 281–286, Feb. 2006
  6. Tsai-Fu Wu,Yung-Chu Chen, Jeng-Gung Yang, Chia-Ling Kuo ,”Isolated Bidirectional Full bridge DC-DC Converter with a Flyback Snubber” ”IEEE Trans. Power Electron., vol. 25, no. 7, pp.1915-1922, July. 2010.
  7. R. Watson, F.C. Lee and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in Flyback converters”, Power Electronics Specialist Conference, 1994, pp.909-9 16.
  8. J. P. Rodrigues, S. A. Mussa, M. L. Heldwein, and A. J. Perin, “Three level ZVS active clamping PWM for the DC–DC buck converter,” IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2249–2258, Oct. 2009.
  9. S. J. Jang, C. Y. Won, B. K. Lee, and J. Hur, “Fuel cell generation system with a new active clamping current-fed half-bridge converter,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 332–340, Jun. 2007.
  10. J. M. Correa, F. A. Farret, N. Canha, and M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Ind. Electron., vol. 51, no. 5,pp. 1103–1112, Oct. 2004.
  11. Z. Jiang and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” IEEE Trans. Ind. Electron., vol. 53,no. 4, pp. 1094–1104, Aug. 2006.
  12. S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258–2267, Jun. 2008.
  13. H. Tao, J. L. Duarte, and. A.M. Hendrix, “Line-interactive UPS using a fuel cell as the primary source,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3012–3021, Aug. 2008.
  14. R. Huang and S. K. Mazumder, “A soft-switching scheme for an isolated DC/DC converter with pulsating DC output for a three-phase high frequency-link PWM converter,” IEEE Trans. Power Electron., vol. 24,no. 10, pp. 2276–2288, Oct. 2009
  15. S. J. Finney, B. W. Williams, and T. C. Green, “RCD snubber revisited,” IEEE Trans. Ind. Appl., vol. 32, no. 1, pp. 155–160, Jan./Feb. 1996.
  16. D. D. C. Lu, D. K. W. Cheng, and Y. S. Lee, “A single-switch continuous conduction-mode boost converter with reduced reverse-recovery and switching losses,” IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 767–776, Aug. 2003.
  17. Y. S. Lee and B. T. Lin, “Adding active clamping and soft switching to boost–flyback single-stage isolated power-factor-corrected power supplies,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 1017–1027, Nov. 1997.
  18. C. M. C. Duarte and I. Barbi, “An improved family of ZVS-PWM active clamping DC-to-DC converters,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 1–7, Jan. 2002.
  19. T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck–boost type active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154–162, Jan. 2008.
  20. W. Cheng, X. C. Liu, and Y. S. Lee, “A new improved boost converter with ripple free input current using coupled inductors,” in Proc. IEE Int. Conf. Power Electron. Variable Speed Drives, London, U.K., 1998, pp. 592–599.
  21. J. Wang, W. G. Dunford, and K. Monrad, “Analysis of a ripple-free input current boost converter with discontinuous conduction characteristics,” IEEE Trans. Power Electron., vol. 12, no. 4, pp. 684–694, Jul. 1997.
Index Terms

Computer Science
Information Sciences

Keywords

Soft switching boost converter high efficiency high voltage gain