CFP last date
20 December 2024
Reseach Article

Mathematical Modeling of Amperometric Biosensors

Published on None 2011 by K.Kalyan Babu, Dr.Y.Srinivasa Rao
journal_cover_thumbnail
International Conference on VLSI, Communication & Instrumentation
Foundation of Computer Science USA
ICVCI - Number 2
None 2011
Authors: K.Kalyan Babu, Dr.Y.Srinivasa Rao
f2861164-5a94-4939-a7fd-14cc654b8582

K.Kalyan Babu, Dr.Y.Srinivasa Rao . Mathematical Modeling of Amperometric Biosensors. International Conference on VLSI, Communication & Instrumentation. ICVCI, 2 (None 2011), 14-18.

@article{
author = { K.Kalyan Babu, Dr.Y.Srinivasa Rao },
title = { Mathematical Modeling of Amperometric Biosensors },
journal = { International Conference on VLSI, Communication & Instrumentation },
issue_date = { None 2011 },
volume = { ICVCI },
number = { 2 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 14-18 },
numpages = 5,
url = { /proceedings/icvci/number2/2635-1137/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on VLSI, Communication & Instrumentation
%A K.Kalyan Babu
%A Dr.Y.Srinivasa Rao
%T Mathematical Modeling of Amperometric Biosensors
%J International Conference on VLSI, Communication & Instrumentation
%@ 0975-8887
%V ICVCI
%N 2
%P 14-18
%D 2011
%I International Journal of Computer Applications
Abstract

In this paper the response of an amperometric biosensor at mixed enzyme kinetics and diffusion limitations is modelled in the case of the substrate and the product inhibition. A numerical simulation was carried out using a finite difference technique. The complex enzyme kinetics produced different calibration curves for the response at the transition and the steady-state. Results of the simulation are compared with known analytical results and the previous researches on the biosensors.

References
  1. H. Gutfreund, Kinetics for the Life Sciences (Cambridge University Press, Cambridge, 1995)
  2. F.W. Scheller, F. Schubert, Biosensors (Elsevier Science, Amsterdam, 1992)
  3. A.P.F. Turner, I. Karube, G.S.Wilson, Biosensors: Fundamentals and Applications (Oxford UniversityPress, USA, 1990)
  4. J.F. Liang, Y.T. Li, V.C. Yang, J. Pharm. Sci. 89(8), 979 (2000)
  5. K.R. Rogers, Biosens. Bioelectron 10(6–7), 533 (1995)
  6. F.W. Scheller, F. Schubert, J. Fedrowitz, Frontiers in Biosensorics II. Practical Applications, vol. 2(Birkhäuser, Basel, 1997)
  7. D. Yu, B. Blankert, J.C. Vire, J.M. Kauffmann, Anal. Lett. 38(11), 1687 (2005)
  8. A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17(6–7), 441 (2002)
  9. A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, 3rd edn. (Portland Press, London, 2004)
  10. N.C. of the International Union of Biochemistrys, Biochem. J. 213(3), 561 (1983)
  11. R. Baronas, F. Ivanauskas, J. Kulys, J. Math. Chem. 35(3), 199 (2004)
  12. J. Kulys, Nonlinear Anal. Model. Contr. 11(4), 385 (2006)
  13. J.R.D. Corcuera, R. Cavalieri, J. Powers, J. Tang, in Proceedings of the 2004 ASAE/Csae AnnualInternational Meeting (American Society of Agricultural Engineers, Ottawa, Ontario, 2004), p. 47030
  14. L.S. Ferreira, M.B.D. Souza, J.O. Trierweiler, O. Broxtermann, R.O.M. Folly, B. Hitzmann, Comp.Chem. Engng. 27(8), 1165 (2003)
  15. L.D. Mell, T. Maloy, Anal. Chem. 47(2), 299 (1975)
  16. J.P. Kernevez, Enzyme Mathematics. Studies in Mathematics and its Applications (Elsevier Science,Amsterdam, 1980)
  17. J. Kulys, Anal. Lett. 14(B6), 377 (1981)
  18. P.N. Bartlett, R.G. Whitaker, J. Electroanal. Chem. 224(1–2), 27 (1987)
  19. T. Schulmeister, Selective Electrode Rev. 12, 203 (1990)
  20. S.K.C. Lin, C. Du, A. Koutinas, R. Wang, C. Webb, Biochem. Eng. J. 41(2), 128 (2008)
Index Terms

Computer Science
Information Sciences

Keywords

Modeling Simulation Reaction diffusion Biosensor Inhibition