CFP last date
20 December 2024
Reseach Article

Assorted Color Spaces to improve the Image Retrieval using VQ Codebooks Generated using LBG and KEVR

Published on None 2011 by Dr.H.B.Kekre, Dr.Tanuja K. Sarode, Sudeep D. Thepade, Shrikant Sanas
International Conference on Technology Systems and Management
Foundation of Computer Science USA
ICTSM - Number 4
None 2011
Authors: Dr.H.B.Kekre, Dr.Tanuja K. Sarode, Sudeep D. Thepade, Shrikant Sanas
7d6134cb-cb22-48d7-a638-8cb150ce34ff

Dr.H.B.Kekre, Dr.Tanuja K. Sarode, Sudeep D. Thepade, Shrikant Sanas . Assorted Color Spaces to improve the Image Retrieval using VQ Codebooks Generated using LBG and KEVR. International Conference on Technology Systems and Management. ICTSM, 4 (None 2011), 29-36.

@article{
author = { Dr.H.B.Kekre, Dr.Tanuja K. Sarode, Sudeep D. Thepade, Shrikant Sanas },
title = { Assorted Color Spaces to improve the Image Retrieval using VQ Codebooks Generated using LBG and KEVR },
journal = { International Conference on Technology Systems and Management },
issue_date = { None 2011 },
volume = { ICTSM },
number = { 4 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 29-36 },
numpages = 8,
url = { /proceedings/ictsm/number4/2804-255/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Technology Systems and Management
%A Dr.H.B.Kekre
%A Dr.Tanuja K. Sarode
%A Sudeep D. Thepade
%A Shrikant Sanas
%T Assorted Color Spaces to improve the Image Retrieval using VQ Codebooks Generated using LBG and KEVR
%J International Conference on Technology Systems and Management
%@ 0975-8887
%V ICTSM
%N 4
%P 29-36
%D 2011
%I International Journal of Computer Applications
Abstract

The paper presents performance comparison of image retrieval methods based on texture feature extraction using Vector Quantization (VQ) codebook generation techniques like LBG and KEVR (Kekre’s Error Vector Rotation) with assorted color spaces. The image is divided into non overlapping blocks of size 2x2 pixels (each pixel with red, green and blue component). Each block corresponds to one training vector of dimensions 12. The collection of training vectors is called a training set. The texture feature vector of the images are obtained from the most popular VQ algorithms LBG and KEVR applied on the image training set and codebooks of size 8, 16, 32, 64 128, 256 and 512 are generated. These codebooks are the feature vector set for Content Based Image Retrieval (CBIR). The results are obtained using six different color spaces such as RGB, LUV, YCgCb, YCbCr, YUV and YIQ. For experimentation, the generic image database having 1000 images is used. From the results it is observed that KEVR based CBIR shows better performance over LBG based CBIR. Overall in all codebook sizes KEVR in YUV color space gives the best results with higher precision-recall crossover point values; closely followed by YCbCr color space.

References
  1. Sanjoy Kumar Saha, Amit K. Das, B. Chanda, “CBIR using Perception based Texture and Color Measures”, In : 17th Int. Conf. on Pattern Recognition(ICPR’04), Vol. 2, (Aug 2004).
  2. Yong Rui, Thomas S. Huang, “Image Retrieval: Current Techniques, Promising Directions, and Open Issues”, Journal of Visual Communication and Image Representation vol. 10, pp.: 39–62, 1999.
  3. J. Weszka, C. Dyer, and A. Rosenfeld, “A comparative study of texture measures for terrain classification”, IEEE Trans. on Sys., Man. and Cyb. SMC-6(4), 1976.
  4. P. P. Ohanian and R. C. Dubes, “Performance evaluation for four classes of texture features”, Pattern Recognition 25(8), 1992, 819–833.
  5. H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, Vaishali S., “Improved Texture Feature Based Image Retrieval using Kekre’s Fast Codebook Generation Algorithm”, In: Springer-Int. Conf. on Contours of Computing Tech. (Thinkquest-2010), 13-14 March, BGIT, Mumbai (2010).
  6. H.B.Kekre, Sudeep D. Thepade, A.Athawale, A.Shah, P.Verlekar, S.Shirke, “Walsh Transform over Row Mean and Column Mean using Image Fragmentation and Energy Compaction for Image Retrieval”, In.: Int. Journal on Comp. Science and Engg. (IJCSE),Vol 2S, Issue 1, (Jan. 2010).
  7. H.B.Kekre, Sudeep D. Thepade, “Creating the Color Panoramic View using Medley of Grayscale and Color Partial Images”, In: WASET Int. Journal of Electrical, Computer and System Engineering (IJECSE), Vol. 2, No. 3, Summer 2008. Available online at www.waset.org/ijecse/v2/v2-3-26.pdf (2008).
  8. H.B.Kekre, Sudeep D. Thepade, “Rotation Invariant Fusion of Partial Images in Vista Creation”, WASET International Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, No. 2, Spring 2008. Available online at www.waset.org/ijecse/v2/v2-2-13.pdf (2008)
  9. H.B.Kekre, Sudeep D. Thepade, “Scaling Invariant Fusion of Image Pieces in Panorama Making and Novel Image Blending Technique”, Int. Journal on Imaging (IJI), Autumn 2008, Volume 1, No. A08, Available online at www.ceser.res.in/iji.html (2008).
  10. H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “Image Retrieval by Kekre’s Transform Applied on Each Row of Walsh Transformed VQ Codebook”, In.: Invited at ACM-Int. Conf. & Workshop on Emerging Trends in Tech. (ICWET ),TCET, Mumbai, 26-27 Feb 2010, uploaded on ACM Portal. (2010)
  11. H.B.Kekre, Sudeep D. Thepade, A. Athawale, A. Shah, P. Verlekar, S. Shirke, “Energy Compaction and Image Splitting for Image Retrieval using Kekre Transform over Row and Column Feature Vector”, In.: Int. Journal of Comp. Science &Network Security,Vol.10, No.1, Jan2010,www.IJCSNS.org. (2010).
  12. H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features Extracted from Walshlet Pyramid., In: ICGST Int. Journal on Graphics, Vision & Image Processing (GVIP), Vol. 10, Issue I, pp.9-18, (Feb. 2010)
  13. H.B.Kekre, Sudeep D. Thepade, “Using YUV Color Space to Hoist the Performance of Block Truncation Coding for Image Retrieval”, In.: Proc. of IEEE Int. Advanced Computing Conference 2009 (IACC’09), 6-7 March 2009 Thapar University, Patiala, INDIA,(2009).
  14. H. B. Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “Image Retrieval using Color-Texture Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”, In.: ICGST-Int. Journal GVIP, Vol. 9, Issue 5, pp. 1-8, (Sept 2009).
  15. H.B.Kekre, Sudeep D. Thepade, “Color Based Image Retrieval using Amendment Block Truncation Coding with YCbCr Color Space.”, In.: Int. Journal on Imaging (IJI), Vol. 2, No. A09, Autumn 2009, pp. 2-14. Available online at www.ceser.res.in/iji.html (2009)
  16. Wang Xiaoling, “A Novel Cicular Ring Histogram for Content-based Image Retrieval”, In.: First International Workshop on Education Technology and Computer Science.(2009).
  17. Jing Zhang, Gui-li Li, Seok-wum He, “Texture-Based Image Retrieval By Edge Detection Matching GLCM”, In.: 10th Int. conf. on High Perf. Computing and Comm., (Sept. 2008)
  18. Xiaoyi Song, Yongjie Li, Wufan Chen, “A Textural Feature Based Image Retrieval Algorithm”, In.: Proc. of 4th Int. Conf. on Natural Computation. (Oct. 2008).
  19. H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Non-Involutional Orthogonal Kekre’s Transform”, In.: Int. Journal of Multidisciplinary Research & Advances in Engg. (IJMRAE), Vol.1, No. I, www.ascent-journals.com (209).
  20. R. M. Gray, “Vector quantization”, In.: IEEE ASSP Mag., pp.: 4-29, (Apr. 1984).
  21. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design”, In.: IEEE Trans. Commun., vol. COM-28, no. 1, pp.: 84-95. (1980).
  22. H. B. Kekre, Tanuja K. Sarode, “An Efficient Fast Algorithm to Generate Codebook for Vector Quantization”, In.: 1st Int. Conf. on Emerging Trends in Engg. and Technology, ICETET-2008, Raisoni COE, Nagpur, India, pp.: 62- 67, 16-18 July 2008. (2008).
  23. H. B. Kekre, Tanuja Sarode, “Fast Codebook Generation Algorithm for Color Images using Vector Quantization”, In.: Int. Journal of Comp. Sci. & IT, Vol.1, No.1,(Jan 2009).
  24. H. B. Kekre, Tanuja K. Sarode, “Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook”, In.: WASET Int. Journal of cal Comp.Info. Science & Engg. (IJCISE), Vol. 2, No. 4, pp. 235-239, Available: http://www.waset.org/ijcise.(Fall 2008)
  25. H. B. Kekre, Tanuja K. Sarode, “Fast Codebook Search Algorithm for Vector Quantization using Sorting Technique”, In.: ACM Int. Conf. on Advances in Computing, Comm. and Control (ICAC3-2009), pp: 317-325, 23-24 Jan 2009, FCRCE, Mumbai. (2009).
  26. H. Liao, D. Chen, C. Su, H. Tyan, “Real-time event detection and its applications to surveillance systems”, In.: IEEE Int. Symp. Circuits & Systems, Kos, Greece, pp.: 509–512, (May 2006).
  27. H. B. Kekre, Tanuja K. Sarode, “New Clustering Algorithm for Vector Quantization using Rotation of Error Vector”, In.: Int. Journal of Computer Science & Information Security, Vol. 7, No. 03. (2010).
  28. http://wang.ist.psu.edu/docs/related/Image.orig (Last referred on 23 Sept 2008).
  29. H.B.Kekre, Sudeep D. Thepade, “Boosting Block Truncation Coding with Kekre’s LUV Color Space for Image Retrieval” WASET International Journal of Electrical Computer and Systems Engineering (IJECSE), Volume 2, Number 3, pp. 172-180, Spring 2008. http://www.waset.org/ijecse.
  30. H.B.Kekre, Sudeep D. Thepade, “Improving ‘Color to Grey and Back’ using Kekre’s LUV Color Space”, In Proc. of IEEE International Advanced Computing Conference 2009 (IACC’09), Thapar University, Patiala, INDIA, 6-7 March 2009. Is uploaded and available online at IEEE Xplore
  31. H.B.Kekre, Sudeep D. Thepade, Adib Parkar, “A Comparison of Kekre’s Fast Search and Exhaustive Search for various Grid Sizes used for Colouring a Greyscale Image”, In Proc. of 2nd IEEE International Conference on Signal Acquisition and Processing (ICSAP 2010), IACSIT, Bangalore, pp. 53-57, 9-10 Feb 2010.
Index Terms

Computer Science
Information Sciences

Keywords

CBIR Texture Vector Quantization LBG KEVR Color Spaces