CFP last date
20 December 2024
Reseach Article

State of Art Literature Survey on Content base Image Retrieval by Multi Features

Published on May 2013 by Arpita Mathur, Rajeev Mathur
International Conference on Recent Trends in Engineering and Technology 2013
Foundation of Computer Science USA
ICRTET - Number 1
May 2013
Authors: Arpita Mathur, Rajeev Mathur
9ba01679-717e-438c-a478-52b2b3668a12

Arpita Mathur, Rajeev Mathur . State of Art Literature Survey on Content base Image Retrieval by Multi Features. International Conference on Recent Trends in Engineering and Technology 2013. ICRTET, 1 (May 2013), 17-21.

@article{
author = { Arpita Mathur, Rajeev Mathur },
title = { State of Art Literature Survey on Content base Image Retrieval by Multi Features },
journal = { International Conference on Recent Trends in Engineering and Technology 2013 },
issue_date = { May 2013 },
volume = { ICRTET },
number = { 1 },
month = { May },
year = { 2013 },
issn = 0975-8887,
pages = { 17-21 },
numpages = 5,
url = { /proceedings/icrtet/number1/11761-1308/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Recent Trends in Engineering and Technology 2013
%A Arpita Mathur
%A Rajeev Mathur
%T State of Art Literature Survey on Content base Image Retrieval by Multi Features
%J International Conference on Recent Trends in Engineering and Technology 2013
%@ 0975-8887
%V ICRTET
%N 1
%P 17-21
%D 2013
%I International Journal of Computer Applications
Abstract

Rapid growth of World Wide Web has increased the interest towards image retrieval. Different groups need to find a desired image from a collection. The users may require access to the images, based on primitive features, such as color, texture or shape, or associated text. The technology to access these images has also accelerated phenomenally. The current approaches are broad and inter-disciplinary, mainly focused on three aspects of image research which are text-based retrieval, content-based retrieval and interactive based image retrieval. Recently, Content-Based Image Retrieval (CBIR) has become an active research area. This paper gives the literature survey for CBIR which explains rapid growth in this field. It briefly discusses the work done by different researchers.

References
  1. Chang, N. S. , Fu K. S. ,Query-by-Pictorial-Example, 1980, IEEE Transactions on Software Engineering.
  2. Herman, M. ,Kanade, T. ;Kuroe, Shigeru, "Incremental Acquisition of a Three-Dimensional Scene Model from Images", IEEE Transactions, May 1984,Volume : PAMI-6,Issue : 3, Pages : 331 to 340.
  3. Fu, K. S. , "A Step Towards Unification of Syntactic and Statistical Pattern Recognition", IEEE Transactions, May 1986, Volume : PAMI-8 Issue : 3, Pages : 398 to 404
  4. Joseph, T. , Cardenas, A. F. , "PICQUERY: A High Level Query Language for Pictorial Database Management",May 1988 , vol. 14 no. 5, pp. 630-638
  5. Eden, M. , Unser, M. , "Multiresolution feature extraction and selection for texture segmentation", IEEE Transactions, Jul 1989, Volume : 11 Issue : 7, 717 to 728.
  6. Wu, C. M. , Hsieh, K. S, Chen, Y. C. , "Texture features for classification of ultrasonic liver images", IEEE Transactions, Jun 1992, Volume : 11 Issue : 2, 141 to 152.
  7. Smith, J. R. , Chang, S. F. , "VisualSEEk: A Content based image/video retrieval tool", 1997.
  8. Cass, T. A. , "Robust affine structure matching for 3D object recognition", IEEE Transactions, Nov 1998, Volume : 20 Issue : 11, Pg 1265 to 1274
  9. Jain, A. , Hong, L. , "Integrating faces and fingerprints for personal identification", Dec 1998
  10. Figueiredo, M. A. T. ,Hong-Jiang Zhang, Jain, A. K. , Vailaya, A. , "Image classification for content-based indexing ",IEEE Transactions, 2001.
  11. Sandeep, K. , Rajagopalan, A. N. , "Human Face Detection in Cluttered Color Images Using Skin Color and Edge Information. ", Proc. of Indian Conference on Computer Vision, Graphics and Image Processing, 2002.
  12. Grimson, W. E. L. _2;Jun-Wei Hsieh_1, "Spatial template extraction for image retrieval by region matching", IEEE Transactions, Nov 2003.
  13. Valova, I. , Rachevc, B. , "Retrieval by Color Features in Image Databases. ", Proc. of Adbis'04, University of Rousse, Budapest, Hungary, 2004.
  14. Ghebreab, S. , Jaffe, C. C. , Smeulders, A. W. M. , "Population-based incremental interactive concept learning for image retrieval by stochastic string segmentations", IEEE Transactions , 2004
  15. Chen, Y. , Bart, H. L. , Teng, F. , "A Content-Based Image Retrieval System for Fish Taxonomy", Proceedings of the 7th ACM SIGMM international workshop on Multimedia information retrieval, 2005.
  16. Zhang C. , C. , Shyu M. L. , Rubin, S. H. , Chen, S. C. , "User Concept Pattern Learning Framework for Content-Based Image Retrieval", IEEE Transactions, 2006.
  17. Kherfi, M. L. , Ziou, D. , "Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples", Apr 2006.
  18. Basak, J. , Bhattacharya, K. , Chaudhury, S. , "Multiple Exemplar-Based Facial Image Retrieval Using Independent Component Analysis", IEEE Transactions, Dec 2006
  19. Chai J. Y. , C. Zhang, R. Jin, "An Empirical Investigation of User Term Feedback in Textbased Targeted Image Search", ACM Transaction, Inform. Systems, Vol. 25, 2007, No 1.
  20. Er, G. , Fei Li, Qionghai, Wenli Xu, W. , "Multilabel Neighborhood Propagation for Region-Based Image Retrieval", IEEE Transactions, Dec 2008.
  21. Cholleti, S. R. , Fritts, J. E. , Goldman, S. A. , Hui Zhang, Rahmani, R. , " Localized Content-Based Image Retrieval", IEEE Transactions, Nov 2008
  22. Ye, L. , Zang, J. , "Content Based Image Retrieval Using Unclean Positive Examples", Image Processing, IEEE Transactions, Oct 2009.
  23. Camps-Valls, G. ,Kanevski, M, Matasci, G. , Tuia, D. , "Document Title : Learning Relevant Image Features With Multiple-Kernel Classification", Geoscience and Remote Sensing, IEEE Transactions, Oct 2010
  24. Davis, L. S. , Zhe Lin, " Document Title : Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching", Pattern Analysis and Machine Intelligence, IEEE Transactions, Apr 2010.
  25. Harzallah, H. , Jegou, H. , Schmid, C. , Verbeek, J. , "Accurate Image Search Using the Contextual Dissimilarity Measure", IEEE Transactions, Jan. 2010.
  26. Abbadeni, N. , "Computational Perceptual Features for Texture Representation and Retrieval", IEEE Transactions, Jan 2011.
  27. Dacheng Tao_3;Dongquan Liu_2;Hock Soon Seah_4;Jun Yu, " On Combining Multiple Features for Cartoon Character Retrieval and Clip Synthesis", IEEE Transactions, Oct 2012.
  28. Wen, F. , Jingyu Cui, J. , Ke Liu, K. , Wang, X, Tang X. , "IntentSearch: Capturing User Intention for One-Click Internet Image Search", IEEE Transactions , 2012.
Index Terms

Computer Science
Information Sciences

Keywords

Pattern Recognition Algorithms Machine Learning Image Processing Image Retrieval Content Based Image Retrieval Features Texture Shape Entropy Text Based Retrieval Interactive Based Image Retrieval