CFP last date
20 January 2025
Reseach Article

Analysis of Effects of Air Pollution on Mango and Custard apple Tree Leaves using ASD FieldSpec 4 Spectroradiometer and Spectral Indices

Published on January 2018 by Archana R. Mate, Swati B. Magare, Ratnadeep R. Deshmukh
International Conference on Cognitive Knowledge Engineering
Foundation of Computer Science USA
ICKE2016 - Number 2
January 2018
Authors: Archana R. Mate, Swati B. Magare, Ratnadeep R. Deshmukh
2a28fc55-720a-42e6-b386-6f6d246b5c65

Archana R. Mate, Swati B. Magare, Ratnadeep R. Deshmukh . Analysis of Effects of Air Pollution on Mango and Custard apple Tree Leaves using ASD FieldSpec 4 Spectroradiometer and Spectral Indices. International Conference on Cognitive Knowledge Engineering. ICKE2016, 2 (January 2018), 20-26.

@article{
author = { Archana R. Mate, Swati B. Magare, Ratnadeep R. Deshmukh },
title = { Analysis of Effects of Air Pollution on Mango and Custard apple Tree Leaves using ASD FieldSpec 4 Spectroradiometer and Spectral Indices },
journal = { International Conference on Cognitive Knowledge Engineering },
issue_date = { January 2018 },
volume = { ICKE2016 },
number = { 2 },
month = { January },
year = { 2018 },
issn = 0975-8887,
pages = { 20-26 },
numpages = 7,
url = { /proceedings/icke2016/number2/28952-6075/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Cognitive Knowledge Engineering
%A Archana R. Mate
%A Swati B. Magare
%A Ratnadeep R. Deshmukh
%T Analysis of Effects of Air Pollution on Mango and Custard apple Tree Leaves using ASD FieldSpec 4 Spectroradiometer and Spectral Indices
%J International Conference on Cognitive Knowledge Engineering
%@ 0975-8887
%V ICKE2016
%N 2
%P 20-26
%D 2018
%I International Journal of Computer Applications
Abstract

This research aims to examine effects of Air pollution on chlorophyll content, water content, carotenoid content, anthocyanin content of Mango and Custard apple tree leaves using spectral indices. Samples are collected from Control Area (University Area) and Polluted Area (Bus Stand area). ASD FieldSpec4 Spectroradiometer machine is used for collecting spectral reflectance measurement of tree leaves. Spectral signatures are analyzed using spectral indices. Normalized Difference Vegetation Indices(NDVI) and Simple Ratio indices(SR), Red Edge Chlorophyll index (CI Red Edge), Moderate Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI), Double Difference Index (DD), Red-Edge Model (R-M) indices are used for estimate chlorophyll content. Water index (WI), Normalized water indices(NWI) are used for estimate water content. Carotenoid concentration index (CRI700), Photochemical reflectance index (PRI), Plant senescencing reflectance Index (PSRI), Carotenoid concentration index (RNIR*CRI550, RNIR*CRI700) indices are used for estimate carotenoid content. Modified Anthocyanin Content Index (mACI), Anthocyanin Reflectance Index (ARI), Modified Anthocyanin Reflectance Index (mARI), Red/Green indices are used for estimate anthocyanin content. Chlorophyll content and Water content seemed inverse proportion with air pollution in Mango tree but directly proportion in Custard apple tree. Carotenoid Content are seemed directly proportion with air pollution in mango tree but inverse proportion in Custard apple tree. Anthocyanin content seemed inverse proportion with air pollution in both mango and Custard apple tree.

References
  1. C. Lin1 , S. C. Popescu, S. C. Huang , P. T. Chang, and H. L. Wen, "A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves", Biogeosciences, 2015, Vol. 12, pp. 49–66.
  2. E. W. Chappelle, M. S. Kim, and J. E. McMurtrey, "Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and the carotenoids in soybean leaves", Remote Sensing of Environment, Mar. 1992, vol. 39, no. 3, pp. 239–247.
  3. Knudson, L. L. , T. W. Tibbitts and G. E. Edwards, "Measuring of ozone injury by determination of leaf chlorophyll concentration", Journal of Plant Physiology, 1977, vol. 60, pp. 606-608.
  4. Alex S. Olpenda1 and Enrico C. Paringit, "Utilizing Spectral Reflectance And Vegetation Indices Of Bougainvillea Spectabilis For Monitoring Particulate Air Pollution In Metro Manila", In proceedings of the 32nd Asian Conference on Remote Sensing (ACRS2011): Sensing for Green Asia, Taipei International Convention Center, Taipei, Taiwan, 2011.
  5. Jan-Chang CHEN, Chi-Ming YANG, Shou-Tsung Wu, Yuh-Lurng CHUNG, Albert Linton CHARLES, and Chaur-Tzuhn CHEN, "Leaf chlorophyll content and surface spectral reflectance of tree species along a terrain gradient in Taiwan's Kenting National Park", Botanical Studies, 2007, vol. 48, pp. 71-77.
  6. Sims, D. A. , & Gamon, J. A. , "Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages", Remote Sensing of Environment, 2002, vol. 81, pp. 337– 354.
  7. Broge, N. H. , & Leblanc, E. , "Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density", Remote Sensing of Environment, 2001, vol. 76(2), pp. 156–172.
  8. Inoue Y. , Morinaga S. , Shibayama M. , "Non-destructive estimation of water status of intact crop leaves based on spectral reflectance measurements", Japanese Journal of Crop Science, 1993, vol. 62, pp. 462-469.
  9. Carter, G. A. , "Primary and Secondary effects of water content on the spectral reflectance of leaves", American Journal of Botany, 1991, vol. 78, pp. 916-924.
  10. Penuelas J. , Filella I. ,Serrano L. , Save R. , " Cell wall elasticity and water Index (R970 nm/ R900 nm) in wheat under different nitrogen availabilitys", International Journal of Remote Sensing , 1996, vol. 17, pp. 373-382.
  11. J. Penuelas, J. Pinol, R. Ogaya and I. Filella , "Estimation of plant water concentration by the reflectance Water Index WI (R900/R970)", International journal of remote sensing, 1997, vol. 18(13), pp. 2869-2875.
  12. Datt, B. , "Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves", Remote Sensing of Environment, 1998, vol. 66, pp. 111–121.
  13. Gitelson, A. A. , Gritz, U. , & Merzlyak, M. N. , "Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves", Journal of Plant Physiology, 2003, vol. 160, pp. 271 –282.
  14. Gitelson, A. A. , Keydan, G. P. , & Merzlyak, M. N. , "Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin content in higher plant leaves", Geophysical Research Letters, 2006, vol. 33, L11402.
  15. Haboudane, D. , Miller, J. R. , Tremblay, N. , Zarco-Tejada, P. J. , & Dextraze, L. , "Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture", Remote Sensing of Environment, 2002, vol. 81, pp. 416–426.
  16. Carter, G. A. , & Spiering, B. A. , "Optical properties of intact leaves for estimating chlorophyll content", Journal of Environmental Quality, 2002, vol. 31, pp. 1424–1432.
  17. Richardson, A. D. , & Berlyn, P. , "Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting", Tree Physiology, 2002, vol. 22, 499–506.
  18. Le Maire, G. , François, C. , & Dufrene, E. , "Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements", Remote Sensing of Environment, 2004, vol. 89, pp. 1–28.
  19. Zarco-Tejada, P. J. , Miller, J. R. , Mohammed, G. H. , Noland, T. L. , & Sampson, P. H. , "Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data", IEEE Transactions on Geoscience and Remote Sensing, 2001, vol. 39, pp. 1491–1507.
  20. Gamon JA, Surfus JS, "Assessing leaf pigment content and activity with a reflectometer", New Phytol, 1999, vol. 143, pp. 105–117.
  21. Aoki M, Yabuki K, Totsuka T, Nishida M, "Remote sensing of chlorophyll content of leaf (I) effective spectral reflection characteristics of leaf for the evaluation of chlorophyll content in leaves of dicotyledons", Environment Control Biology, 1986, vol. 24, pp. 21– 26.
  22. Carter GA, Knapp AK, "Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration", American Journal of Botany, 2001, vol. 84, pp. 677–684.
  23. Richardson AD, Duigan SP, Berlyn GP, "An evaluation of noninvasive methods to estimate foliar chlorophyll content", New Phytol, 2002, vol. 153, pp. 185–194.
  24. Sims DA, Gamon JA, "Relationship between leaf pigment content and spectral reflectance across a wide range species, leaf structures and development stages", Remote Sensing Environment, 2002, vol. 81, pp. 337– 354.
  25. Gitelson A, Merzlyak MN, "Remote estimation of chlorophyll content in higher plant leaves", International Journal of Remote Sensing, 1997, vol. 18, pp. 291–298.
  26. Gamon JA, Surfus JS, "Assessing leaf pigment content and activity with a reflectometer", New Phytol, 1999, vol. 143, pp. 105–117.
  27. Driss Haboudane, Nicolas Tremblay, John R. Miller, and Philippe Vigneault, "Remote Estimation of Crop Chlorophyll Content Using Spectral Indices Derived From Hyperspectral Data", IEEE Transactions On Geoscience and Remote Sensing, 2008, vol. 46(2), pp. 423-437.
  28. P. H. Sampson, G. H. Mohammed, P. J. Zarco-Tejada, J. R. Miller, T. L. Noland, D. Irving, "The bioindicators of forest condition project: A physiological, remote sensing approach", The Forestry Chronicle, 2000, vol. 76, no. 6, pp. 941–952.
  29. E. Raymond Hunt, Jr, and Barrett N. Rock, "Detection of Changes in Leaf Water Content Using Near- and Middle-Infrared Reflectances", Remote Sensing of Environment, 1989, vol. 30, pp. 43-54.
  30. M. A. Babar, M. P. Reynolds, M. van Ginkel, A. R. Klatt, W. R. Raun, and M. L. Stone, "Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yieldunder Irrigation", Crop Science, 2006, vol. 46, pp. 578-588.
  31. B. Prasad, B. F. Carver, M. L. Stone, M. A. Babar, W. R. Raun, and A. R. Klatt, "Genetic Analysis of Indirect Selection for Winter Wheat Grain Yield using Spectral Reflectance Indices", Crop Science, 2007, vol. 47, pp. 1416- 1425.
  32. Daniel A. Sims, John A. Gamon, "Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages", Remote Sensing of Environment, 2002, vol. 81, pp. 337– 354.
  33. Gitelson, A. A. , Keydan, G. P. , & Merzlyak, M. N. , "Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin content in higher plant leaves", Geophysical Research Letters, 2006, 33, L11402.
  34. Gitelson, A. A. , M. N. Merzlyak, and O. B. Chivkunova, "Optical properties and non-destructive estimation of anthocyanin content in plant leaves", Photochemistry and Photobiology, 2001, vol. 74, pp. 38 – 45.
  35. Anatoly A. Gitelson, Olga B. Chivkunova, and Mark N. Merzlyak, "Nondestructive Estimation of Anthocyanins and Chlorophylls in Anthocyanic Leaves", American Journal of Botany, 2009, vol. 96(10), pp. 1861–1868.
Index Terms

Computer Science
Information Sciences

Keywords

Anthocyanin Content Carotenoid Content Chlorophyll Content Spectral Indices Water Content