CFP last date
20 February 2025
Reseach Article

Nonlinear Identification of Ph Process using Support Vector Machine

Published on December 2013 by M. Rajalakshmi, S. Kalyani, S. Jeyadevi, C. Karthik
International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
Foundation of Computer Science USA
ICIIIOES - Number 2
December 2013
Authors: M. Rajalakshmi, S. Kalyani, S. Jeyadevi, C. Karthik

M. Rajalakshmi, S. Kalyani, S. Jeyadevi, C. Karthik . Nonlinear Identification of Ph Process using Support Vector Machine. International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences. ICIIIOES, 2 (December 2013), 36-42.

@article{
author = { M. Rajalakshmi, S. Kalyani, S. Jeyadevi, C. Karthik },
title = { Nonlinear Identification of Ph Process using Support Vector Machine },
journal = { International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences },
issue_date = { December 2013 },
volume = { ICIIIOES },
number = { 2 },
month = { December },
year = { 2013 },
issn = 0975-8887,
pages = { 36-42 },
numpages = 7,
url = { /proceedings/iciiioes/number2/14291-1411/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
%A M. Rajalakshmi
%A S. Kalyani
%A S. Jeyadevi
%A C. Karthik
%T Nonlinear Identification of Ph Process using Support Vector Machine
%J International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
%@ 0975-8887
%V ICIIIOES
%N 2
%P 36-42
%D 2013
%I International Journal of Computer Applications
Abstract

This paper discusses the application of support vector machine in the area of identification of nonlinear dynamical systems. The aim of this paper is to identify suitable model structure for nonlinear dynamic system. In this paper, Adaptive Neuro Fuzzy Inference Systems (ANFIS) and Support Vector Regression (SVR) models are applied for identification of highly nonlinear dynamic process. The results obtained by ANFIS and SVR are compared. The simulation results show that SVR is very effective to identify the nonlinear system.

References
  1. K. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4–27, 1990.
  2. K. Valarmathi, D. Devaraj and T. K. Radhakrishnan. "Intelligent techniques for system Identification and controller tuning in ph process". Brazilian Journal of Chemical Engineering Vol. 26, No. 01, pp. 99 - 111, January - March, 2009
  3. Lennart Ljung, System Identification - Theory for the User, 2nd Ed, PTR Prentice Hall, Upper Saddle River, N. J. (1999).
  4. L. R. Medsker, L. C. Jain, Recurrent neural networks: design and applications, Boca Raton, FL: CRC Press, 2000.
  5. Alireza Karbasi, "Comparison of NNARX, ANN and ARIMA Techniques to Poultry Retail Price Forecasting", Thesis, University of Zabol, 2009.
  6. Heba Al-Hiary, Malik Braik, Alaa Sheta, and Aladdin Ayesh, "Identification of A Chemical Process Reactor Using Soft Computing Techniques ", IEEE, 2008.
  7. M. Norgaard, O. Ravn, Poulsen, and L. K. Hansen, "Neural Networks for Modelling and Control of Dynamic Systems". Springer, London, 2000.
  8. L. Ricker,http://depts. washington. edu/control/larry/te/download. html,Computers and Chemical Engineering, 1995.
  9. A. K. Jain, J. Mao, and K. K. Mohiuddin, "Artificial neural networks:A tutorial," IEEE Computer Special Issue on Neural Computing, pp. 31–44,1996.
  10. H. L. Qin and X. B. Li. A chaotic search method for global optimization on tent map. Electric Machines and Control, 2004, 8(1):67-70.
  11. Juan Angel Resendiz-Trejo,Wen Yu,Xiaoou Li " Support Vector Machine for Nonlinear system on-Line identification",International Conference on Electrical and Electronics engineering(ICEEE2006), Mexico.
  12. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Publishing House of Electronics Industry, Beijing, 2004. ).
  13. V. N. Vapnik. The Nature of Statistical Learning Theory Springer, New York, 2000.
  14. S R Navghare, Dr. G L Bodhe, Shruti," Design of Adaptive pH Controller using ANFIS", International Journal of Computer Applications (0975 – 8887) Volume 33– No. 6, November 2011.
  15. V. Vapnik, The Nature of Statistical Learning Theory, springer Verilag, New York,1995.
  16. V. Vapnik, Statistical Learning Theory, John Wiley, New York,1998.
  17. V. Vapnik, S. Golowich, A. Smola, Adv. Neural Inform. Proces. Syst. 9(1996) 281.
  18. M. Agarwal, A. M. Jade, V. K. Jayaraman, B. D. Kulkarni, Chem. Eng. Prog. 98 (2003) 100.
  19. L. B. Jack, A. K. Nandi, Mech. Sys. Sig. Proc. 16 (2002) 372.
  20. Lin S, Ying K, Chen S, Lee Z. Particle swarm optimization for parameter determination and feature selection of support vector machines. Exp Syst Appl 2008;35(4):1817-24.
  21. Min J, Lee Y. Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Exp Syst Appl 2005;28(4):603–14.
  22. S. Kalyani , K. S. Swarup " Pattern analysis and classification for security evaluation in power networks", Electrical power and energy systems 44 (2013) 547–560 Elsevier, 2012.
  23. M. Rajalakshmi, C. Karthik "Nonlinear identification of pH process using NNARX model", CiiT International Journal of Artificial Intelligent Systems and Machine Learning, Print: ISSN 0974 – 9667 & Online: ISSN 0974 – 9543, July 2012.
  24. M. Rajalakshmi, C. Karthik "Non Linear Structure Identification Of pH Process" in IEEE - ICAESM 2012, EGS Pillay Engineering college, Nagapattinam, cited by Scopus, ISBN 978-1-4673-0213-5,Mar 30-31, page 45.
Index Terms

Computer Science
Information Sciences

Keywords

Ph Process Svr Anfis Dynamic System