CFP last date
20 February 2025
Reseach Article

Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC�DC Matrix Converter based on Cockcroft�Walton Voltage Multiplier

Published on December 2013 by G. S. Senthil Raaj, G. T. Sundar Rajan
International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
Foundation of Computer Science USA
ICIIIOES - Number 12
December 2013
Authors: G. S. Senthil Raaj, G. T. Sundar Rajan

G. S. Senthil Raaj, G. T. Sundar Rajan . Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC�DC Matrix Converter based on Cockcroft�Walton Voltage Multiplier. International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences. ICIIIOES, 12 (December 2013), 1-8.

@article{
author = { G. S. Senthil Raaj, G. T. Sundar Rajan },
title = { Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC�DC Matrix Converter based on Cockcroft�Walton Voltage Multiplier },
journal = { International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences },
issue_date = { December 2013 },
volume = { ICIIIOES },
number = { 12 },
month = { December },
year = { 2013 },
issn = 0975-8887,
pages = { 1-8 },
numpages = 8,
url = { /proceedings/iciiioes/number12/14363-1414/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
%A G. S. Senthil Raaj
%A G. T. Sundar Rajan
%T Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC�DC Matrix Converter based on Cockcroft�Walton Voltage Multiplier
%J International Conference on Innovations In Intelligent Instrumentation, Optimization and Electrical Sciences
%@ 0975-8887
%V ICIIIOES
%N 12
%P 1-8
%D 2013
%I International Journal of Computer Applications
Abstract

This paper proposes a high-performance transformer less single-stage high step-up ac–dc matrix converter using a Cockcroft–Walton (CW) voltage multiplier. Employing an eight unidirectional-switch to form four bi-directional switch matrix converters between the ac source and CW circuit, the proposed converter provides high quality of line conditions, adjustable output voltage, and low output ripple. The matrix converter is operated with two independent frequencies. One of which is associated with power factor correction (PFC) control, and the other is used to set the output frequency of the matrix converter. Moreover, the relationship among the latter frequency, line frequency, and output ripple will be discussed. A commercial control IC associating with a pre-programmed complex programmable logic device is built as the system controller. The operation principle, control strategy, and design considerations of the proposed and modified converter are all detailed in this paper. The simulation results demonstrate the high performance of the proposed and modified converter and the validity for high step-up ac–dc applications.

References
  1. Cho, J. G. , and Cho, G. H, "Soft-switched Matrix Converter for High Frequency direct AC-to-AC Power Conversion," Int. J. Electron. , 1992,72, (4), pp. 669-680.
  2. Sobczyk, T. , "Numerical Study of Control Strategies for Frequency Conversion with a Matrix Converter," Proceedings of Conference on Power Electronics and Motion Control, Warsaw, Poland, 1994, pp. 497-502.
  3. P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, "Matrix converters: a technology review," IEEE Trans. On Power Electronics, vol. 49, no. 2, pp. 276-287,April 2002.
  4. S. Kim, S. -K. Sul, and T. A. Lipo, "AC/AC power conversion based on matrix converter topology with unidirectional switches,"
  5. M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, "Analysis of the dynamic and steady-state performance of Cockcroft–Walton cascade rectifiers," IEEE Trans. Power Electron. , vol. 7, no. 3, pp. 526–534, Jul. 1992.
  6. I. C. Kobougias and E. C. Tatakis, "Optimal design of a half-wave Cockcroft–Walton voltage multiplier with minimum total capacitance," IEEE Trans. Power Electron. , vol. 25, no. 9, pp. 2460–2468, Sep. 2010.
  7. M. M. Weiner, "Analysis of Cockcroft–Walton voltagemultipliers with an arbitrary number of stages," Rev. Sci. Instrum. , vol. 40, no. 2, pp. 330–333, Feb. 1969.
  8. J. Tanaka and I. Yuzurihara, "The high frequency drive of a new multistage rectifier circuit," in Proc. IEEE Power Electron. Spec. Conf. , Apr. 1988, pp. 1031–1037.
  9. S. M. Sbenaty and C. A. Ventrice, "High voltage DC shifted RF switchmode power supply system design for gas lasers excitation," in Proc. Appl. Power Electron. Conf. Expo. , Mar. 1991, pp. 173–177.
  10. P. G. Maranesi, F. Raina, M. Riva, and G. Volpi, "Accurate and nimble forecast of the HV source dynamics," in Proc. IEEE Power Electron. Spec. Conf. , Jun. 2000, pp. 539–543.
  11. F. Belloni, P. Maranesi, and M. Riva, "Parameters optimization for improved dynamics of voltage multipliers for space," in Proc. IEEE Power Electron. Spec. Conf. , Jun. , 2004, pp. 493–443.
  12. S. D. Johnson, A. F. Witulski, and R. W. Erickson, "Comparison of resonant topologies in high-voltage DC applications," IEEE Trans. Aerosp. Electron. Syst. , vol. 24, no. 3, pp. 263–274, May 1988.
  13. E. Chu, L. Gamage, M. Ishitobi, E. Hiraki, and M. Nakaoka, "Improved transient and steady-state performance of series resonant ZCS highfrequency inverter-coupled voltage multiplier converter with dual mode PFM control scheme," J. Electr. Eng. Jpn. , vol. 149, no. 4, pp. 60–72, Dec. 2004.
  14. H. J. Chung, "A CW CO2 laser using a high-voltage dc-dc converter with resonant inverter and Cockroft–Walton multiplier," Opt. Laser Technol. , vol. 38, no. 8, pp. 577–584, Nov. 2006.
  15. Z. Cao, M. Hu, N. Frohleke, and J. Bocker, "Modeling and control design for a very low-frequency high-voltage test system," IEEE Trans. Power Electron. , vol. 25, no. 4, pp. 1068–1077, Apr. 2010.
  16. F. L. Luo and H. Ye, "Positive output cascade boost converters," Proc. IEE Electric Power Appl. , vol. 151, no. 5, pp. 590–606, Sep. 2004.
  17. B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switchedcapacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 2, pp. 687–696, Mar. 2008.
  18. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, E. F. Romaneli, and R. Gules, "Voltage multiplier cells applied to non-isolated DC-DC converters," IEEE Trans. Power Electron. , vol. 23, no. 2, pp. 871–887, Mar. 2008.
  19. W. Li, Y. Zhao, Y. Deng, and X. He, "Interleaved converter with voltage multiplier cell for high step-up and high-efficiency conversion," IEEE Trans. Power Electron. , vol. 25, no. 9, pp. 2397–2408, Sep. 2010.
  20. K. B. Park, G. W. Moon, and M. J. Youn, "Nonisolated high step-up stacked converter based on boost-integrated isolated converter," IEEE Trans. Power Electron. , vol. 26, no. 2, pp. 577–587, Feb. 2011.
  21. Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "A novel high step-up DC-DC converter for a microgrid system," IEEE Trans. Power Electron. , vol. 26, no. 4, pp. 1127–1136, Apr. 2011.
  22. S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, "A cascaded high stepup DC-DC converter with single switch for microsource applications," IEEE Trans. Power Electron. , vol. 26, no. 4, pp. 1146–1153, Apr. 2011.
  23. IEEE Recommended Practices and Requirements for Harmonics Control in Electric Power Systems, IEEE Std. 519, 1992.
  24. Electromagnetic Compatibility (EMC)-Part 3: Limits-Section 2: Limits for Harmonic Current Emissions (Equipment Input Current <16A Per Phase), IEC1000-3-2 Doc, 1995.
  25. Draft-Revision of Publication IEC 555-2: Harmonics, Equipment for Connection to the Public Low Voltage Supply System, IEC SC 77A, 1990.
  26. B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, "A review of single-phase improved power quality AC-DC converters," IEEE Trans. Ind. Electron. , vol. 50, no. 5, pp. 962–981, Oct. 2003.
  27. B. Akin and H. Bodur, "A new single-phase soft-switching power factor correction converter," IEEE Trans. Power Electron. , vol. 26, no. 2, pp. 436–443, Feb. 2011.
  28. B. Su, J. Zhang, and Z. Lu, "Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM," IEEE Trans. Power Electron. , vol. 26, no. 2, pp. 427–435, Feb. 2011.
  29. J. Sun, X. Ding, M. Nakaoka, and H. Takano, "Series resonant ZCS-PFM DC-DC converter with multistage rectified voltage multiplier and dualmode PFM control scheme for medical-use high-voltage X-ray power generator," IEE Proc. —Electr. Power Appl. , vol. 147, no. 6, pp. 527–534, Nov. 2000.
  30. A. Shenkman, Y. Berkovich, and B. Axelrod, "Novel AC-DC and DCDC converters with a diode-capacitor multiplier," IEEE Trans. Aerosp. Electron. Syst. , vol. 40, no. 4, pp. 1286–1293, Oct. 2004.
  31. J. F. Chen, R. Y. Chen, and T. J. Liang, "Study and Implementation of a single-stage current-fed boost PFC converter with ZCS for high voltage applications," IEEE Trans. Power Electron. , vol. 23, no. 1, pp. 379–386, Jan. 2008.
  32. C. M. Young and M. H. Chen, "A novel single-phase ac to high voltage dc converter based on Cockcroft–Walton cascade rectifier," in Proc. Int. Conf. Power Electron. Drive Syst. , Nov. 2009, pp. 822–826.
  33. C. M. Young, M. H. Chen, T. A. Chang, and C. C. Ko, "Transfomerless high step-up dc-dc converter with Cockcroft–Walton voltage multiplier," in Proc. IEEE Conf. Ind. Electron. Appl. , Jun. 2011, pp. 1599–1604.
  34. P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein, "Matrix converters: A technology review," IEEE Trans. Ind. Electron. , vol. 49, no. 2, pp. 276–288, Apr. 2002.
Index Terms

Computer Science
Information Sciences

Keywords

Cockcroft–walton(cw) Voltage Multiplier High Step-up Ac–dc Matrix Converter.