CFP last date
20 January 2025
Reseach Article

Image Retrieval using Canopy and Improved K mean Clustering

Published on None 2011 by S.Sabena, Dr.P.Yogesh, L.Sai Ramesh
International Conference on Emerging Technology Trends
Foundation of Computer Science USA
ICETT2011 - Number 3
None 2011
Authors: S.Sabena, Dr.P.Yogesh, L.Sai Ramesh
c7b6c141-a23a-404f-aac5-160e2abbc45e

S.Sabena, Dr.P.Yogesh, L.Sai Ramesh . Image Retrieval using Canopy and Improved K mean Clustering. International Conference on Emerging Technology Trends. ICETT2011, 3 (None 2011), 15-19.

@article{
author = { S.Sabena, Dr.P.Yogesh, L.Sai Ramesh },
title = { Image Retrieval using Canopy and Improved K mean Clustering },
journal = { International Conference on Emerging Technology Trends },
issue_date = { None 2011 },
volume = { ICETT2011 },
number = { 3 },
month = { None },
year = { 2011 },
issn = 0975-8887,
pages = { 15-19 },
numpages = 5,
url = { /proceedings/icett2011/number3/3510-icett020/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Emerging Technology Trends
%A S.Sabena
%A Dr.P.Yogesh
%A L.Sai Ramesh
%T Image Retrieval using Canopy and Improved K mean Clustering
%J International Conference on Emerging Technology Trends
%@ 0975-8887
%V ICETT2011
%N 3
%P 15-19
%D 2011
%I International Journal of Computer Applications
Abstract

In a typical content based image retrieval (CBIR) system, target images are sorted by feature similarities with respect to the query. These methods fail to capture similarities among target images and user feedback. To overcome this problem existing methods combine relevance feedback and clustering. But clustering requires more number of expensive distance calculations. To remedy this problem we propose a new technique that combine canopy method, relevance feedback and improved k mean clustering. Canopy method reduces expensive distance calculation by measuring exact distances between points that occur in a common canopy. Improved k mean clustering automatically compute number of cluster and uses max min distance to reduce computational complexity. Relevance feedback captures exact user interest. The experiments show that our method is highly effective for image retrieval.

References
  1. ZHANGXu-bo, PENGJin-ye.2010. “Re-ranking algorithm using clustering and relevance feedback for image retrieval”.
  2. Andrew McCallum, Kamal Nigam.2005. Lyle H. Ungar, “Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching”.
  3. Nhu-Van Nguyen, Alain Boucher.2005.“Clusters-based Relevance feedback for CBIR: a combination of query movement and query expansion”.
  4. M. Ortega, S. Mehrotra.2004. “Relevance feedbacktechniques in the MARS image retrieval system”, Multimedia Systems, vol 9, no 6, pp 535-547.
  5. D. Kim, C. Chung, and K. Barnard.2005. “Relevance feedback using adaptive clustering for image similarity retrieval.” J. Syst. Softw. 9-23.
  6. Y. Ishikawa, R. Subramanya, and C. Faloutsos. 1998.“MindReader: Querying databases through multiple examples. ” In Proc. Of the 24th Intl. Conference on Very Large Databases, pp 218–227.
  7. G. Park, Y. Baek, and H.K. Lee.2005. "Re-ranking Algorithm Using Post retrieval clustermg for Content-based Image Retrieval", Information Processing and Management, 4 1(2), pp. 177- 194.
  8. Y. Hu, N.H. Yu, Z.W. Li.2007 "Image Search Result Clustering and Reranking via Partial Grouping", Proc of ICME ,
  9. S.L]:
  10. s.n], pp . 603-606.
  11. J. B. MacQueen.1967. "Some Methods for classification and Analysis of Multivariate Observations" , Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Vol 1, pp. 281–297.
  12. C. Buckley and G. Salton,1965.“Optimization of relevance feedback weights,” in Proc. SIGIR’95.
  13. G. Salton and M. J. McGill.1983. Introduction to Modern Information Retrieval. New York: McGraw-Hill.
  14. W. M. Shaw, “Term-relevance computations and perfect retrieval performance,” Inform. processing Management.
  15. C. J. Van Rijsbergen.1987 Information Retrieval, 2nd ed. London, U.K.: Butterworths.
  16. M. L. Kerfi and D. Ziou.2004 “Image retrieval based on feature weighing and relevance feedback,” in Proc. IEEE Int. Conf. Image Processing (ICIP2004), vol. 1, pp. 689–692.
  17. A. Grigorova, F. G. B. De Natale, C. Dagli, and T. S. Huang.2007. “Contentbased image retrieval by feature adaptation and relevance feedback,” IEEE Trans. Multimedia, vol. 9, no. 6, pp. 1183–1192.
  18. M. Koskela, J. Laaksonen, and E. Oja.2004 “Use of image subsets in image retrieval with self-organizing maps,” in Proc. Int. Conf. Image and Video Retrieval (CIVR), pp. 508–516.
  19. K.-H. Yap and K. Wu.2005. “Fuzzy relevance feedback in content-based image retrieval systems using radial basis function network,” in Proc. IEEE Int. Conf. Multimedia and Expo.
  20. H. Friguiand, and O. Nasraoui,2004.“Unsupervised Learning of Prototypes and Attribute Weights,” Pattern Recognition, vol.37, no.3, pp.567-581.
  21. Y. Chan, W. Ching, M. K. Ng, and J.Z. Huang.2004 “An Optimization Algorithm for Clustering Using Weighted Dissimilarity Measures,” Pattern Recognition, vol.37, no.5, pp. 943-952.
  22. J. M. Pena, J. A. Lozano, and P. Larranaga.1999 “An empirical comparison of four initialization methods for the k-means algorithm,” Pattern Recognition Letters, vol. 20, pp. 1027–1040.
Index Terms

Computer Science
Information Sciences

Keywords

Clustering Image retrieval learning methods Relavance feedback