CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Applying Machine Learning Techniques for Cognitive State Classification

Published on January 2013 by Shantipriya Parida, Satchidananda Dehuri
International Conference in Distributed Computing and Internet Technology 2013
Foundation of Computer Science USA
ICDCIT - Number 1
January 2013
Authors: Shantipriya Parida, Satchidananda Dehuri
bc18928b-3a10-4adb-ab3e-69045eec786d

Shantipriya Parida, Satchidananda Dehuri . Applying Machine Learning Techniques for Cognitive State Classification. International Conference in Distributed Computing and Internet Technology 2013. ICDCIT, 1 (January 2013), 40-45.

@article{
author = { Shantipriya Parida, Satchidananda Dehuri },
title = { Applying Machine Learning Techniques for Cognitive State Classification },
journal = { International Conference in Distributed Computing and Internet Technology 2013 },
issue_date = { January 2013 },
volume = { ICDCIT },
number = { 1 },
month = { January },
year = { 2013 },
issn = 0975-8887,
pages = { 40-45 },
numpages = 6,
url = { /proceedings/icdcit/number1/10241-1008/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference in Distributed Computing and Internet Technology 2013
%A Shantipriya Parida
%A Satchidananda Dehuri
%T Applying Machine Learning Techniques for Cognitive State Classification
%J International Conference in Distributed Computing and Internet Technology 2013
%@ 0975-8887
%V ICDCIT
%N 1
%P 40-45
%D 2013
%I International Journal of Computer Applications
Abstract

One of the key challenges in cognitive neuroscience is determining the mapping between neural activities and mental representations. The functional magnetic resonance imaging (fMRI) provides measure of brain activity in response to cognitive tasks and proved as one of the most effective tool in brain imaging and studying the brain activities. The complexities involved in fMRI classification are: high dimensionality of fMRI data, smaller size of the dataset, interindividual differences, and dependence on data acquisition techniques. The state-of-the-art machine learning techniques popularly used by neuroimaging community for variety of fMRI data analysis has created exciting possibilities to understand deeply the functioning of inner structure of the human brain. In this paper, we present an overview of different stages involved in cognitive state classification and focuses on different machine learning approaches, their worthiness, and potentiality in identifying brain states into pre-specified classes. The machine learning techniques ranges from conventional to recent hybrid techniques which have shown promising result in fMRI classification are discussed here. Further, this paper suggests direction for further research in this area by synergizing with other related fields.

References
  1. Savoy, R. L. 1996. Functional magnetic resonance imaging (fMRI). Encyclopedia of Neuroscience, 2nd ed. Boston, MA: Birkhauser.
  2. Onut, I. V. , Ghorbani, A. A. 2004. Classifying Cognitive States from fMRI Data using Neural Networks. in Proc. IEEE Joint Conf. Neural Networks, vol. 4, 2871-2875.
  3. Zanzotto, F. M. , Croce, D. 2010. Comparing EEG/ERP-like and fMRI-like Techniques for Reading Machine Thoughts. in Proc. 2010 Int. Conf. Brain Informatics, Berlin, Germany: Springer-Verlag, 133-144.
  4. Naselaris, T. , Kay, K. N. , Nishimoto, S. , Gallant, J. L. 2011. Encoding and decoding in fMRI. NeuroImage, vol. 56, no. 2, 400-410.
  5. Mitchell, T. M. , Hutchinson, R. , Niculescu, R. S. , Pereira, F. , Wang, X. 2004. Learning to Decode Cognitive States from Brain Images. Machine Learning, vol. 57, no. 1-2, 145-175.
  6. Schmaler, C. 2008. Infering cognition from fMRI brain images A machine learning approach. Sequence Learning Seminar SS08.
  7. Horwitz, B. , Tagamets, M. , McIntosh, A. R. 1999. Neural modeling, functional brain imaging, and cognition. Trends in Cognitive Sciences, vol. 3, no. 3, 91-98.
  8. Nielsen, F. A. , Christensen, M. S. , Madsen, K. H. Lund, T. E. , Hansen, L. K. 2006. fMRI Neuroinformatics. IEEE Engineering in Medicine and Biology Magazine, vol. 25, no. 2, 112-119.
  9. O'Toole, A. J. , Abdi, F. J. H. , Penard, N. , Dunlop, J. P. , Parent, M. A. 2007. Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Cognitive NeuroScience, vol. 19, 1735-1752.
  10. Lindquist, M. A. 2008. The Statistical Analysis of fMRI Data Statistical Science, vol. 23, no. 4, 439-464.
  11. Viviani, R. , Gron, G. , Spitzer, M. 2005. Functional principal component analysis of fMRI data. Human Brain Mapping, vol. 24, 109-129.
  12. Anderson, A. , Bramen, J. , Douglas, P. K. , Lenartowicz, A. , Cho, A. , Culbertson, C. , Brody, A. L. , Yuille, A. L. , Cohen, M. S. 2011. Large Sample Group Independent Component Analysis of Functional Magnetic Resonance Imaging Using Anatomical Atlas-Based Reduction and Bootstrapped Clustering. Int. J. Imaging Syst Technol. vol. 21, no. 2, pp. 223–231.
  13. Kohavi, R. , John, G. H. 1997. Wrappers for Feature Subset Selection. Artificial Intelligence, vol. 97, no. 1-2, 273-324.
  14. Pereira, F. , Mitchell, T. , Botvinick, M. 2009. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, vol. 45, no. 1 Suppl. , S199-S209.
  15. Mitchell, T. M. , Hutchinson, R. , Just, M. A. Niculescu R. S. , Wang, X. 2003. Classifying Instantaneous Cognitive States from fMRI data. in American Medical Informatics Association Symposium, 465-469.
  16. Mitchell, T. M. , Hutchinson, R. , Niculescu, R. S. , Pereira, F. , Wang X. 2004. Learning to Decode Cognitive States from Brain Images. Machine Learning, vol. 57, no. 1-2, 145-175.
  17. Zhang, Y. , Wu, L. 2012. An MR brain images classifier via principal component analysis and kernel support vector machine. Progress In Electromagnetics Research, vol. 130, pp. 369-388.
  18. Khalid, N. E. A. , Ibrahim, S. , Haniff, P. N. M. M. 2011. MRI brain abnormalities segmentation using K-nearest neighbors (k-NN). Int. J. Computer Science Engineering, vol. 3, no. 2.
  19. Kuncheva, L. I. , Rodriguez, J. J. 2010. Classifier Ensembles for fMRI data Analysis: An Experiment. Magnetic Resonance Imaging, vol. 28, no. 4, 583-593.
  20. Espirito-Santo, R. D. , Sato, J. R. , Martin, M. G. M. 2007. Discriminating brain activated area and predicting the stimuli performed using artificial neural network. Exacta, Sao Paulo, vol. 5, no. 2, 311-320.
  21. Ni, Y. , Chu, C. , Sunders, C. J. , Ashburner, J. , 2008. Kernel Methods for fMRI Pattern Prediction. in Proc. IEEE Int. Joint Conf. Neural Networks, 692-697.
  22. Richiardi, J. , Eryilmaz, H. , Schwartz, S. , Vuilleumier, P. , Ville, D. V. D. 2011. Decoding brain states from fMRI connectivity graphs. NeuroImage, vol. 56, no. 2, 616-626.
  23. Michel, V. , Gramfort, A. , Varoquaux, G. , Eger, E. , Keribin, C. , Thirion, B. 2011. A supervised clustering approach for f-MRI based inference of brain states. CoRR abs/1104. 5304.
  24. Davatzikos, C. , Ruparel, K. , Fan, Y. , Shen, D. G. , Acharyya, M. , Loughed, J. W. , Gur, R. C. , D. D. Langleben, D. D. 2005. Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection. NeuroImage, vol. 28, no. 3, 663-668.
  25. Boehm, O. , Hardoon, D. R. , 2011. Classifying cognitive states of brain activity via one-class neural networks with feature selection by genetic algorithms. Int. Journal of Machine Learning & Cybernetics, vol. 2, no. 3, 125-134.
  26. deCharms, R. C. 2008. Application of real-time fMRI. Nature Reviews Neuroscience, vol. 9, No. 9, 720-729.
  27. Liu, X. , Liu, B. , Chen, J. , Chen, Z. 2011. Functional magnetic resonance imaging of regional homogeneity changes in parkinsonian resting tremor. Neural Regeneration Research, vol. 6, no. 11, 811-815.
  28. Raizada, R. D. S. , Kriegeskorte, N. 2010. Pattern-information fMRI: new questions which it opens up, and challenges which face it. Int. J. Imaging Systems Technology, vol. 20, no. 1, 31-41.
  29. Wang, Z. 2009. A hybrid SVM-GLM approach for fMRI data analysis. NeuroImage, vol. 46, no. 3, 608-615.
  30. Yang, H. , Liu, J. , Sui, J. , Pearlson, G. , Calhoun, V. D. 2010. A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification for schizophrenia. Frontiers in Human Neuroscience, vol. 4.
Index Terms

Computer Science
Information Sciences

Keywords

Machine Learning