We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Comparison of Effects of Cryogenic Treatment on Different Types of Steels : A Review

Published on March 2012 by P. I. Patil, R. G. Tated
International Conference in Computational Intelligence
Foundation of Computer Science USA
ICCIA - Number 9
March 2012
Authors: P. I. Patil, R. G. Tated
6e025baf-f21d-40c9-9dd8-03e04167d69c

P. I. Patil, R. G. Tated . Comparison of Effects of Cryogenic Treatment on Different Types of Steels : A Review. International Conference in Computational Intelligence. ICCIA, 9 (March 2012), 10-29.

@article{
author = { P. I. Patil, R. G. Tated },
title = { Comparison of Effects of Cryogenic Treatment on Different Types of Steels : A Review },
journal = { International Conference in Computational Intelligence },
issue_date = { March 2012 },
volume = { ICCIA },
number = { 9 },
month = { March },
year = { 2012 },
issn = 0975-8887,
pages = { 10-29 },
numpages = 20,
url = { /proceedings/iccia/number9/5156-1068/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference in Computational Intelligence
%A P. I. Patil
%A R. G. Tated
%T Comparison of Effects of Cryogenic Treatment on Different Types of Steels : A Review
%J International Conference in Computational Intelligence
%@ 0975-8887
%V ICCIA
%N 9
%P 10-29
%D 2012
%I International Journal of Computer Applications
Abstract

Cryogenic treatment (CT) is the supplementary process to conventional heat treatment process in steels, by deep–freezing materials at cryogenic temperatures to enhance the mechanical and physical properties of materials being treated. Cryogenic treatment (CT) of materials has shown significant improvement in their properties .Various advantages like increase in hardness, increase in wear resistance, reduced residual stresses, fatigue Resistance, increased dimensional stability, increased thermal conductivity, toughness, by transformation of retained austenite to martensite, the metallurgical aspects of eta-carbide formation, precipitation of ultra fine carbides, and homogeneous crystal structure. Different approaches have been applied for CT to study the effect on different types of steels and other materials. This paper aims at the comprehensive analysis of strategies followed in CTs and their effects on properties of different types of steels by application of appropriate types of CTs from cryogenic conditioning of the process. The conclusion of the paper discusses the development and outlines the trends for the research in this field.

References
  1. Dr. R. G. Tated, Dr. S. R. Kajale, Dr. Kumar Iyer, Improvement in tool life of cutting tool by application of deep cryogenic treatment, 7th International tooling conference held at Politecnico di Torino, Itlay on 2-5 May 2006, pp. 135-141
  2. National Institute of Standards and Technology, Boulder, Colorado Published in: The MacMillan Encyclopedia Of Chemistry, New York, 2002
  3. Barron, R.F.; Mulharn, C.R. Cryogenic Treatment of AISI T8 and C1045 Steels. Cryogenic Engineering Conference, Madison, WI, August 21.24, 1979; Plenum Press: New York, 1980.
  4. Jha, A.R. Cryogenic Technology and Applications; Butterworth-Heinemann: Oxford, UK, 2006; 1.21.
  5. Timmerhaus, K.D.; Reed, R.P. Cryogenic Engineering; Springer: New York, USA, 2007; 3.27.
  6. Baldissera, P.; Delprete, C. Effects of deep cryogenic treatment on static mechanical properties of 18NiCrMo5 carburized steel. Materials and Design 2009, 30, 1435.1440.
  7. Barron, R.F. Cryogenic treatment of metals to improve wear resistance. Cryogenics 1982, 22, 409.414.
  8. Mazur, J. Investigation of austenite and martensite subjected to very low temperatures. Cryogenics 1964, 4, 36.
  9. Gordon, P.; Cohen, M. The transformation of retained austenite in high speed steel at sub atmospheric temperatures. Transactions of the ASM 1942, 30, 569.588.
  10. Yaffee, M.J. Wider use of cryogenic quenching seen. Aviation Week/Space Technology 1967, 86, 81.85.
  11. Nordquist, W.N. Low temperature treatment of metals. Tooling and Production Magazine, 1953, 7, 72.100.
  12. White Paper,Sub-zero treatment.Technology, processes and equipment, Date 01/09/2010: Published in Germany by Linde Gas http://heattreatment.linde.com/international/web/l g/ht/like35lght.nsf/repositorybyalias/wp_sbzro_12/$fil e/12.pdf
  13. Das, D.; Dutta, A.K.; Ray, K.K. Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear 2009, 266, 297.309.
  14. Moore, K.; Collins, D.N. Cryogenic treatment of three heat treated steels. Key Eng. Mater. 1993, 86.87, 47. 54.
  15. Collins, D.N.; Dormer, J. Deep cryogenic treatment of a D2 cold-worked tool steel. Heat Treat. Met. 1997, 24 (3), 71.74.
  16. G. Roberts, G. Krauss, R. Kennedy, Tool steels, 5th ed., ASM International., Metals Park, OH, USA, 1998.
  17. K.E. Thelning, Steel and its heat treatment, 2nd ed., Butterworths, London 1984; 240.252.
  18. R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, 3rd ed., PWS Publishing Company, Boston, 1992.
  19. R.G. Bowes, Heat Treat. Met. 1 (1974) 29-32.
  20. D. Das, A.K. Dutta, V. Toppo, K.K. Ray, The Effect of cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel, Mater. Manuf. Process 22 (2007) 474.480.
  21. E.A. Carlson, in: ASM Handbook, vol. 4, Heat Treating, 10th ed., ASM International, Metals Park, Ohio, 1990, pp. 203-206
  22. Zhirafar, S.; Rezaeian, A.; Pugh, M. Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology 2007, 186, 298.303.
  23. Bensely, A.; Prabhakaran, A.; MohanLal, D.; Nagarajan, G. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics 2006, 45, 747.754.
  24. Huang, J.Y.; Zhu, Y.T.; Liao, X.Z.; Beyerlein, I.J.; Bourke, M.A.; Mitchell, T.E. Microstructure of Cryogenic treated M2 tool steel. Materials Science Engineering 2003, A339, 241.244.
  25. Silva, D.F.J.; Franco, S.D.; Machado, A.R.; Ezugwu, E.O.; Souza, A.M. Performance of cryogenically treated HSS tools. Wear 2006, 261, 674.685.
  26. Mohan Lal D, Renganarayanan S, Kalanidhi A. Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 2001;41:149-155.
  27. R.F. Barron, Prog. Refrig. Sci. Technol. 1 (1973) 529- 533.
  28. J. Taylor, Metalworking Production, May (1978) 73- 77.
  29. T.P. Sweeney, Heat Treat. 18 (1986) 28-32.
  30. R.B. Reasbeck, Metallurgia 56 (1989) 178-179.
  31. D. Das, A.K. Dutta , K.K. Ray, ¡®Correlation of microstructure with wear behaviour of deep cryogenically treated AISI D2 steel¡¯,Wear 267 (2009) 1371.1380.
  32. Collins, D.N. Cryogenic treatment of tool steels. Adv. Mater. Process. 1998, H23.H29.
  33. Molinari A, Pellizzari M, Gialanella S, Straffelini G, Stiasny KH. Effect of deep cryogenic treatment on the mechanical properties of tool steels. J Mater Process Technol 2001;118: 350.355.
  34. Liu, H.; Wang, J.; Yang, H.; Shen, B. Effects of cryogenic treat-ment next term on microstructure and abrasion resistance of CrMnB high-chromium cast iron subjected to sub-critical treat-ment. Materials Science and Engineering A 2008, 478, 324.328.
  35. Johan Singh, P.; Mannan, S.L.; Jayakumar, T.; Achar, D.R.G. Fatigue life extension of notches in AISI 304L weldments using deep cryogenic treatment. Eng. Failure Analysis 2005, 12, 263.271.
  36. Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, K. Effect of cryogenic treatment next term on distribution of residual stress in case carburized En 353 steel. Materials Science and Engineering A 2008, 479 (5), 229.235.
  37. Meng, F.; Tagashira, K.; Azuma, R.; Sohma, H. Role of ¥ç-carbide precipitation in the wear resistance improvements of Fe-12Cr-Mo-V-1.4C tool steel by cryogenic treatment. ISIJ Int. 1994, 34, 205.210.
  38. Lewskovsek, V.; Kalin, M.; Vizintin, J. Influence of deep- cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum 2006, 80, 507. 518.
  39. Popandopulo, N.; Zhukova, L.T. Transformation in high speed steels during cold treatment. Met. Sci. Heat Treatment 1980, 22 (10), 708.710.
  40. Firouzdor, V.; Nejati, E.; Khomamizadeh, F. Effect of deep cryogenic treatment next term on wear resistance and tool life of M2 HSS drill. J. Mater. Process. Technol. 2008, 206, 467.472.
  41. D.N.Collins, ¡°Deep Cryogenic Treatment of Tool Steels : a Review¡±, Heat Treatment of Metals, 1996.2, pp 40-42
  42. Darwin, J.D.; Mohan Lal, D.; Nagarajan, G. Optimization of cryogenic treatment next term to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J. Mater. Process. Technol. 2008, 195, 241.247.
  43. M. Arockia Jaswin,D. Mohan Lal. Effect of cryogenic treatment on the tensile behaviour of En 52 and 21-4N valve steels at room and elevated temperatures Materials and Design xxx (2010) xxx.xxx
  44. Darwin, J.D.; MohanLal, D.; Nagarajan, G. Optimization of cryogenic treatment to maximize the wear resistance of Chrome Silicon spring steel by Taguchi method. International Journal Material Science 2007, 2, 17.28.
  45. Preciado, M.; Bravo, P.M.; Alegre, J.M. Effect of low temperature tempering prior cryogenic treatment on carburized steels. Journal of Materials Processing Technology 2006, 176, 41.44.
  46. Bensely, A.; Senthilkumar, D.; MohanLal, D.; Nagarajan, G.; Rajadurai, A. Effect of cryogenic treatment on tensile behavior of case carburized steel- 815M17. Materials Characterization 2007,58,485-491.
  47. Dobbins, D.B. Cryogenic treatment can boost life. Metal Forming 1995, 29
  48. Kamody, D.J.Cryogenics process update. Advanced Material Processes 1999, 155 (6), 67.69.
  49. Delaye, J.M.; Limoge, Y.J. Molecular dynamic study of vacancy like defects in a model glass: dynamical behaviour and diffusion. Journal of Physics (Paris) 1993, 2, 2079.2097.
  50. Nirmal S. Kalsi, Rakesh Sehgal, and Vishal S. Sharma Cryogenic Treatment of Tool Materials: A Review Materials and Manufacturing Processes, 25: 1077. 1100, 2010
  51. Gogte, C.L.; Iyer, K.M.; Paretka,R.K.; Peshwe, D.R. Deep Subzero Processing of Metals and Alloys: Evolution of Microstructure of AISI T42 Tool Steel. Materials and Manufacturing Processes 2009, 24 (7&8), 718.722.
  52. Yun, D.; Xiaoping, L. Hongshen, X. Deep cryogenic treatment of high-speed steel and its mechanism. Heat Treatment of Metals 1998, 3, 55.59.
  53. Jinyong X, Yanping L, Jianzhong W, Xiaoyun K, Yuan G, Zhong X (2007) A study on double glow plasma surface metallurgy Mo. Cr high speed steel of carbon steel. Surf Coat Technol 201:5093. 5096
  54. Barron RF (1996) In: Proceedings of the Conference of Manufacturing Strategies, vol 6, Nashville, pp 137
  55. Kamody DJ. US Patent 5,259,200, 9 November 1993.
  56. Babu, P.S.; Rajendran, P.; Rao, K.N. Cryogenic treatment of M1, EN19 and H13 tool steels to improve wear resistance. Institute of Engineers (India) Journal-MM 2005, 86 (10), 64.66.
  57. Sreerama Reddy, T.V.; Ajaykumar, B.S.; Reddy, M.V.; Venkataram, R. Improvement of tool life of cryogenically treated P-30 tools, Proceedings of International Conference on Advanced Materials and Composites (ICAMC-2007) at the National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum, India, 2007; 457.460.
  58. Seah KHW, Rahman M, Yong KH (2003) Performance evaluation of cryogenically treated tungsten carbide cutting tool inserts. Proc IME B J Eng Manufact 217:29.43
  59. Avner, S.H., 2003. Introduction to Physical Metallurgy. Tata McGraw-Hill Publishing Co. Ltd., New Delhi, pp. 305.307.
  60. Vanvlack, L.H., 1998. Elements of Material Science and Engineering. Addison-Wesley Series in Metall. Mater. Eng., 6th ed, pp. 316.320.
  61. Yang, H.S.; Jun, Wang; Shen, B.L.; Liu, H.H.; Gao, S.J.; Huang, S.J. Effect of cryogenic treatment on the matrix structure and abrasion resistance of white cast iron subjected to destabilization treatment. Wear 2006, 261 (10), 1150.1154.
  62. V. Leskovsek, M. Kalin, J. Vizintin, Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS, Vacuum 80 (2006) 507. 518.
  63. Gill S.S.; Singh, R.; Singh, H.; Singh, J. Wear behavior of cryogenically treated tungsten carbide inserts under dry and wet turning conditions. International Journal of Machine Tools & Manufacture 2009, 49, 256.260
  64. Pen-Li Yen, as reported in his thesis "Effect of Cryogenic Treatment on the Wear Resistance of Tool Steel," submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at The Pennsylvania State University
  65. Podgornik, V. Leskovsek, and J. Vizintin ¡®Influence of Deep-Cryogenic Treatment on Tribological Properties of P/M High-Speed Steel¡¯ Materials and Manufacturing Processes, 24: 734.738, 2009
  66. A. Akhbarizadeh, A. Shafyei, M.A. Golozar ; Effects of cryogenic treatment on wear behavior of D6 tool steel, Materials and Design 30 (2009) 3259.3264
  67. Debdulal Das, Apurba Kishore Dutta, Kalyan Kumar Ray; Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness; Materials Science and EngineeringA (2008), doi:10.1016/j.msea.2009.10.070
  68. Jun Wang, Ji Xiong , Hongyuan Fan, Hong-Shan Yang, Hao-Huai Liu, Bao-Luo Shen , ¡®Effects of high temperature and cryogenic treatment on the microstructure and abrasion resistance of a high chromium cast iron¡¯ J Mater Process Technol 209 ( 2009) 3236.3240
  69. Singh, K., 2009, ¡°Study the effect of cryogenic treatment on various tools for machining cost reduction: A case study,¡± M.Tech dissertation, Punjab Technical University, Jalandhar
  70. Debdulal Das , Rajdeep Sarkar , Apurba Kishore Dutta , Kalyan Kumar Ray; Influence of sub-zero treatments on fracture toughness of AISI D2 steel; Materials Science and Engineering A 528 (2010) 589. 603
  71. Phillip Nash Rajendra M. Kelkar Study on Effect of Cryogenic Treatment on Properties and Mechanism of M2 Tool Steel in their research project
  72. P. Paulin, Frozen gears, Gear Technol. 10 (1993) 26. 29.
  73. Meng, F.; Tagashira, K.; Sohma, H. Wear resistance and microstructure of cryogenic treated Fe-1.4Cr-1C bearing steel. Scripta Metall. Mater. 1994, 31, 865.868.
  74. D. Senthilkumar, I. Rajendran, M. Pellizzari , Juha Siiriainen; Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel, Journal of Materials Processing Technology 211 (2011) 396.401
  75. D. Das ,A.K. Dutta and K.K. Ray; On the enhancement of wear resistance of tool steels by cryogenic treatment, Philosophical Magazine Letters,Vol. 88, No. 11, November 2008, 801.811
  76. Alexandru, Ailincai G, Baciu C. Influence of cryogenic treatments on life of alloyed high speed steels. Mem Etud Sci Rev Metall 1990;4:203.6.
  77. Stratton, P.F., 2007. Optimizing nano-carbide precipitation in tool steels. J. Mater. Sci. Eng. A 449, 809.812.
  78. Huang, J.Y.; Zhu, Y.T.; Liao, X.Z.; Beyerlein, I.J.; Bourke, M.A.; Mitchell, T.E. Microstructure of cryogenic treated M2 tool steel. Materials Science and Engineering A 2003, 339, 241.244.
  79. Gill, S. S., Singh, H., Singh, R., Singh, J., 2009, ¡°Cryoprocessing of cutting tool materials.a review,¡± International Journal of Adv Manuf Technology (inpress) DOI 10.1007/s00170-009-2263-9
  80. Hao-huai Liu, H.; Wang, J.; Yang, H.; Shen, B. Effects of cryogenic treatment on microstructure and abrasion resistance of CrMnB high-chromium cast iron subjected to sub-critical treatment. Materials Science and Engineering A 2007, in press.
  81. Hao-huai Liu, H.; Wang, J.; Shen, B.; Yang, H.; Gao, S.; Huang, S. Effects of deep cryogenic treatment on property of 3Cr13Mo1V1.5 high chromium cast iron. Materials and Design 2007, 28, 1059.1064.
  82. C.K. Kim, D.G. Lee, S. Lee, Mater. Sci. Technol. 23 (2007) 1065.1074.
  83. I.F. Pariente, F.J. Belzunce, C.R.yJ. Riba, Mater. Sci. Technol. 24 (2008) 981.985.
  84. Johan Singh P, Guha B. Fatigue life improvement of AISI 304L cruciform welded joints by cryogenic treatment. Eng Fail Anal 2003;10:1.12.
  85. Parrish, G. Carburizing: Microstructure and Properties; ASM International, 1999.
  86. Baldissera, P. Fatigue scatter reduction through deep cryogenic treatment on the 18NiCrMo5 carburized steel. Materials and Design, 2009, 30, 3636.3642.
  87. A. Bensely, L. Shyamala, S. Harish, D. Mohan Lal, G. Nagarajan, K. Junik, A. Rajadurai, Mater. Des. 30 (2009) 2955-2962.
  88. S. Harish,A. Bensely, D. Mohan Lal, A. Rajadurai, Gyongyver B. Lenkey, J. Mater. Proc. Technol. 209 (2009) 3351-3357.
  89. Rhyim Y-M, Han S-H, Na Y-S, Lee J-H. Effect of deep cold cryogenic treatment on carbide precipitation and mechanical properties of tool steels. Solid State Phenom 2006;118:9.14
  90. I. Wierszyllowski, Defect Diff. Forum 258-260 (2006) 415-420.
  91. A. Mahmudi, H.M.Ghasemi and H.R.Faradji, ¡°Effects of Cryogenic Treatments on the Mechanical Properties and Wear Behaviour of High-speed Steel M2¡±, Heat Treatment of Metals, 2000.3, pp 69-72
  92. Shaohong Li , Yinzi Xie, Xiaochun Hardness and toughness investigations of deep cryogenic treated cold work die steel Cryogenics 50 (2010) 89.92
  93. D. Mohanlal, Renganarayanan, S. Kalanidhi, Indian J. Cryogenics 219 (2) (1996) 41.
  94. Kalpak jian, S., 1985. Manufacturing Processes for Engineering Materials. Addison Wesley, Reading, MA, pp. 66.75.
  95. Dahotre, N.B., Samant, A.N. 2008. Multilevel residual stress evaluation in laser sur-face modified alumina ceramic. Appl. Phys. A: Mater. Sci. Process. 90, 493- 499. 96] M. Mack Aldener, M. Olsson, Proceedings of the 4th International Con-ference of the Engineering Intergrity Society, Cambridge, UL, 2000, 371.
  96. Xiong Chuang-xian, Zhang Xin-ming, Deng Yun-lai, Xiao Yang, Deng Zhen-zhen, Chen Bu-xiang. Effects of cryogenic treatment on mechanical properties of extruded Mg.Gd.Y.Zr (Mn) alloys. J Central South Univ Technol 2007;14:305.9.
  97. F. Cajner, V. Leskovsek,¢§ D. Landek, H. Cajner, Mater. Manuf. Process 24 (2009) 743.746.
  98. Kollmer, K.P. Applications & Developments in the Cryogenic Processing of Materials, The Technology Interface. Electronic Journal for Engineering Technology 1999 3(1). Available at: http://et.nmsu.edu/¡­etti/. Last accessed Oct. 1, 2009.
  99. Wilson V. Ultra-cold treatment up heavy duty tool wear. Iron Age 1971;207(6):58.
  100. Maria Arockia Jaswin, Gobi Subbarathinam Shankar and Dhasan Mohan Lal; Wear Resistance Enhancement in Cryotreated En 52 and 21-4N Valve Steels; International Journal of precision engineering and manufacturing Vol. 11, No. 1, pp. 97-105 Feb 2010 / 97
  101. Vimal, A.J.; Bensley, A.; MohanLal, D.; Srinivasan, K. Deep cryogenic treatment improves wear resistance of En 31 steel. Materials and Manufacturing Process 2008, 23, 369.376.
  102. Paul Stratton, Michael Graf The effect of deep cold induced nano-carbides on the wear of case hardened components Cryogenics 49 (2009) 346.349.
  103. P. Paulin, Gear Technology, March/April 1993, p.23
  104. N.B. Dhokey , S. Nirbhavne ¡®Dry sliding wear of cryotreated multiple tempered D-3 tool steel¡¯ J. OF MATERIALS PROCESSING TECHNOLOGY 209 (2009) 1484.1490
  105. Cord Henrik Surberg, Paul Stratton, Erich Lingenhole, The Influence of cold treatment on casehardened steel, Heat Treating Progress . March/April 2008,45-48
  106. Mohan Lal, D.; Renganarayanan, S.; Kalanidhi, A. Effect of cryotreatment on T1 type high-speed tool material. Indian Journal of Cryogenics 1996, 21 (2), 41.44.
  107. P Sekhar Babu, P Rajendran, Dr K N Rao; Cryogenic Treatment of M1, EN19 and H13 Tool Steels to Improve Wear Resistance, IE(I) Journal-MM Vol 86, October 2005.
  108. Dong, Y.; Lin, X.; Xiao, H. Deep cryogenic treatment of high-speed steel and its mechanism. Heat Treatment of Metals 1998, 3, 55.59
  109. Rick Frey. Cryogenic treatment improves properties of drills and p/m parts. Industrial Heating 1983, 21.23.
  110. P. Cohen, D. Kamody, Cryogenics goes deeper, Cutting Tool Eng. l50 (7) (1998) 46.50.
  111. K. Vadivel & R. Rudramoorthy; Performance analysis of cryogenically treated coated carbide inserts, Int J Adv Manuf Technol (2009) 42:222.232
  112. Yong AYL, Seah KHW, Rahman M (2006) Performance evaluation of cryogenically treated tungsten carbide tools in turning. Int J Mach Tools Manuf 46:2051.2056 doi: 10.1016/j . ijmachtools.2006.01.002
  113. Quek TW (2004) Machining of steel using cryogenically treated cutting tool inserts. Ph.D. thesis, NationUniversity of Singapore, Singapore
  114. Tabrett, C.P., Sare, I.R., 1998. Effect of high temperature and sub-ambient treatment on the matrix structure and abrasion resistance of a high-chromium white iron. Scripta Mater. 38, 1747.1753.
  115. Wang, J., Li, C., Liu, H., Yang, H., Shen, B., Gao, S., Huang, S., 2006. The precipitation and transformation of secondary carbides in a high chromium cast iron materials characterization 56, 73.78.
  116. Wang, J., Zuo, R.L., Sun, Z.P., Li, C., Liu, H.H., Yang, H.S., Shen, B.L., Huang, S.J., 2005. Influence of secondary carbides precipitation and transformation on hardening behavior of a 15 Cr.1 Mo.1.5 V white iron. Mater. Characterization 55, 234.240.
  117. Hoque, M., Ford, R. and Roth, J., 2005, ¡°Automated Image Analysis of Microstructure Changes in Metal Alloys¡±, Submitted to the Transactions of the North America Manufacturing Research Institute of the Society of Manufacturing Engineer
  118. Wayne Reitz and John Pendray, ,¡®Cryoprocessing of materials.a review of current status¡¯, Materials and Manufacturing Processes, 2001, 16(6), 829.840.
  119. Hann SK, Gates JD (1997) Transformation toughening white cast iron. J Mater Sci 32:1249.1259
  120. C.H. Surberg, P. Stratton, Klaus Lingenhole, Cryogenics 48 (2008) 42.47.
  121. S.K. Putatunda, Mater. Sci. Eng. A297 (2001) 31.43
Index Terms

Computer Science
Information Sciences

Keywords

Austenite Cryogenic Treatment Carbide formation Cooling rate Dimensional stability Deep-freezing Martensite Soaking temperature Wear resistance