CFP last date
20 February 2025
Reseach Article

Effect of Nd+3 and K+ Substitutions on Phase Transition of Ferroelectric lead Germanate Single Crystals

Published on October 2012 by A N Wazalwar, A G Katpatal
International Conference on Benchmarks in Engineering Science and Technology 2012
Foundation of Computer Science USA
ICBEST - Number 2
October 2012
Authors: A N Wazalwar, A G Katpatal

A N Wazalwar, A G Katpatal . Effect of Nd+3 and K+ Substitutions on Phase Transition of Ferroelectric lead Germanate Single Crystals. International Conference on Benchmarks in Engineering Science and Technology 2012. ICBEST, 2 (October 2012), 23-26.

@article{
author = { A N Wazalwar, A G Katpatal },
title = { Effect of Nd+3 and K+ Substitutions on Phase Transition of Ferroelectric lead Germanate Single Crystals },
journal = { International Conference on Benchmarks in Engineering Science and Technology 2012 },
issue_date = { October 2012 },
volume = { ICBEST },
number = { 2 },
month = { October },
year = { 2012 },
issn = 0975-8887,
pages = { 23-26 },
numpages = 4,
url = { /proceedings/icbest/number2/8697-1029/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Benchmarks in Engineering Science and Technology 2012
%A A N Wazalwar
%A A G Katpatal
%T Effect of Nd+3 and K+ Substitutions on Phase Transition of Ferroelectric lead Germanate Single Crystals
%J International Conference on Benchmarks in Engineering Science and Technology 2012
%@ 0975-8887
%V ICBEST
%N 2
%P 23-26
%D 2012
%I International Journal of Computer Applications
Abstract

Double doped (Nd+3 + K+) ferroelectric lead germanate single crystals were grown by controlled cooling of melt. Greenish tinge crystals of 5 x 4 x 3 mm3 were found embedded in the solid. Pure lead germanate was grown by cz technique for comparative analysis. Dielectric constant and loss tangent of pure crystals showed a sharp dielectric peak at 179°C while dielectric constant of doped crystals showed temperature dependence with diffuse dielectric maxima at 350°C. Results suggest a significant positive shift of ferroelectric transition temperature by 171°C. Mechanisms for the shift in transition temperature and diffuse nature of dielectric maxima are discussed.

References
  1. H. Iwasaki, S. Miyazawa, H. Koizumi, K. Sugii, and N. Niizeki, J. Appl. Phys 43, 4907 (1972).
  2. J. F. Ryan and K. Hisano, J. Phys. C : Solid State Phys 6, 566 (1973).
  3. Y. Iwata, Ann Rep. Res, Reactor, Inst. Kyoto University 6, 86 (1973).
  4. W. Muller-Lierman, W. Gebhardt, H. H. Otto, and G. Busse, Ferroelectrics 20, 299 (1978).
  5. T. J. Hosea, D. J. Lockwood, and W. Taylor, J. Phys C: Solid State Phys 12, 387 (1979).
  6. Y. Goto and E. Sawaguchi, Journal of the Physical Society of Japan 5, 46 (1979).
  7. J. H. Kim, J. B. Kim, K. S. Lee, H. S. Choi, J. N. Kim, and S. D. Lee, Solid State Comm 88(9), 727 (1993).
  8. A. Gruverman, N. Ponomarev, and K. Takahashi, Jpn. J. Appl. Phys 33, 5536 (1994).
  9. J. Hatano, T. Kojima, Y Matsui, Y. Ishida, H. Uehara, K. Takahashi, and Y. Adachi, Jpn. J. Appl. Phys 36, 6155 (1997).
  10. R. N. P. Choudhary and Nanda K Misra, J. Phys Chem Solids 59, 605 (1998).
  11. V. N. Gavrilov, A. G. Zakhryants, E. V. Zolotoyabko, E. M. Iolin, A. G. Maloyan, and A. V. Muromtsv, Sov. Phys. Solid State 25 (1), 4 (1983).
  12. K. Hissano, and K. Toda, J. Raman Spectroscopy 10, 24 (1981).
  13. R. A. Cowley, Ferroelectrics 53, 27 (1984).
  14. V. N. Moiseenko, I. I. Peters, V. P. Sugonyak, and V. G. Linnik, Sov. Phys Solid State 27 (7), 1282 (1985).
  15. T. J. Hosea, and S. C. Ng, J. Phys C. Solid State Phys (U. K) 21 (30), 5317 (1988).
  16. K. B. Lyons, and P. A. Fleury, Phys. Rev. B. 17(6), 2402 (1978).
  17. J. J. Lockwood, J. W. Arthur, W. Taylor, and T. J. Hosea, Solid State Comm 20, 703 (1976).
  18. V. G. Kozlov, S. P. Lebedev, A. A. Minanev, A. A. Volkov, V. G. Monia, and I. V. Sinyakov, Ferroelectrics 21, 373 (1988).
  19. M. P. Trubitsyn, S. Waplak, A. S. Ermakov, and V. G. Linnik, Condensed Matter Physics 2, 4(20), 677 (1999).
  20. A. I. Lebedev, I. A. Sluchinskaya, V. N. Demin, and I. H. Munro, Phase Transitions 60, 67 (1999).
  21. A. I. Lebedev, and I. A. Sluchinskaya, Ferroelectrics 169, 293 (1995).
  22. A. P. Levanyuk, and A. S. Sigov, Defects and Structural Phase transitions (Gordon and Breach), New York (1988).
  23. H. H. Otto, M. Stock, W. Gebhardt, and M. Plomska, Ferroelectrics 25, 543 (1980).
  24. M. L. Nanda Goswami, R. N. P. Choudhary, and P. K. Mahapatra, Ferroelectrics 227, 175 (1999).
  25. M. P. Trubitsyn, and V. G. Pozdeev, Physics of the Solid state 42, 7, 1341 (2000).
  26. M. P. Trubitsyn, and V. G. Pozdeev, Physics of the Solid state 42, 12, 2254 (2000).
  27. A. D. Brause, and R. A. Cowley, Structural Phase Transitions (Taylor and Francis, Philadelphia, Mir, Moscow (1984).
  28. A. V. Wazalwar, and A. G. Katpatal, Materials Letters 55, 221 (2002).
  29. R. E. Newnham, R. W. Wolfe, and C. N. W. Darlinton, J. Solid State Chem, USA, 6(3), 378 (1973).
  30. A. A. Kaminskii, S. E. Sarsikov, H. D. Kursten, and D. Schultze, Phys Status Solidi (a) 72, 207 (1982).
  31. S. Sugihara, I. Yonekura, H. Kurahashi, and R. Sekine, Jpn. J. Appl. Phys, 36, part I, 9b, 6129 (1997).
  32. A. V. Wazalwar, and A. G. Katpatal, Journal of Physics and Chemistry of Solids 63, 1633 (2002).
  33. In Sook YI, and M. Miyayama, Jpn. J. Appl. Physics 36, 1321 (1997).
  34. D. Zhang, T. Wang, Y. Zhu, C. Wang, and X. Wu,
Index Terms

Computer Science
Information Sciences

Keywords

Effect Nd+3