We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

Image Fusion and Fuzzy Clustering based Change Detection in SAR Images

Published on February 2015 by Hire Gayatri Ashok, D. R. Patil
International Conference on Advances in Science and Technology
Foundation of Computer Science USA
ICAST2014 - Number 1
February 2015
Authors: Hire Gayatri Ashok, D. R. Patil
073d9c6c-314b-40e3-a46c-e78f46f65ad8

Hire Gayatri Ashok, D. R. Patil . Image Fusion and Fuzzy Clustering based Change Detection in SAR Images. International Conference on Advances in Science and Technology. ICAST2014, 1 (February 2015), 24-29.

@article{
author = { Hire Gayatri Ashok, D. R. Patil },
title = { Image Fusion and Fuzzy Clustering based Change Detection in SAR Images },
journal = { International Conference on Advances in Science and Technology },
issue_date = { February 2015 },
volume = { ICAST2014 },
number = { 1 },
month = { February },
year = { 2015 },
issn = 0975-8887,
pages = { 24-29 },
numpages = 6,
url = { /proceedings/icast2014/number1/19471-5011/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Advances in Science and Technology
%A Hire Gayatri Ashok
%A D. R. Patil
%T Image Fusion and Fuzzy Clustering based Change Detection in SAR Images
%J International Conference on Advances in Science and Technology
%@ 0975-8887
%V ICAST2014
%N 1
%P 24-29
%D 2015
%I International Journal of Computer Applications
Abstract

Change detection in remote sensing images becomes more and more important for the last few decades, among them change detection in Synthetic Aperture Radar (SAR) images are having some more difficulties than optical ones due to the fact that SAR images suffer from the presence of the speckle noise. This paper presents unsupervised change detection in multi-temporal Synthetic Aperture Radar (SAR) images based on Image Fusion and Fuzzy Clustering algorithms. Image fusion technique is used to generate difference image by collecting information from Log ratio image and Mean ratio image. In order to intensify the information of changed regions and suppress the background information, Contourlet fusion rules are chosen to fuse the contourlet coefficients. For classifying changed and unchanged regions a reformulated FLICM (Fuzzy Local Information c-means) is proposed. This method reduces the effect of speckle noise because it is insensitive to noise. Experimental results, obtained on real multi-temporal SAR images by the Reformulated FLICM clustering algorithm exhibited low error than pre-existence.

References
  1. L. Bruzzone and D. F. Prieto, "An adaptive semiparametric and contextbased approach to unsupervised change detection in multi-temporal remote-sensing images", IEEE Trans. Image Process. , vol. 11, no. 4, pp. 452-466, Apr. 2002.
  2. Robin, L. Moisan, and S. Le Hegarat-Mascle, "An a-contrario approach for subpixel change detection in satellite imagery", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 32, no. 11, pp. 1977-1993, Nov. 2010.
  3. M. Bosc, F. Heitz, J. P. Armspach, I. Namer, D. Gounot, and L. Rumbach, "Automatic change detection in multimodal serial MRI:Application to multiple sclerosis lesion evolution", Neuroimage, vol. 20, no. 2, pp. 643-656, Oct. 2003.
  4. D. Rey, G. Subsol, H. Delingette, and N. Ayache, "Automatic detection and segmentation of evolving processes in 3-D medical images: Application to multiple sclerosis", Med. Image Anal. , vol. 6, no. 2, pp. 163-179, Jun. 2002.
  5. D. M. Tsai and S. C. Lai, "Independent component analysis-based background subtraction for indoor surveillance", IEEE Trans. Image Process. , vol. 18, no. 1, pp. 158-167, Jan. 2009.
  6. K. R. , Merril, and L. , Jiajun. A Comparison of Four Algorithms for Change Detection in an Urban Environment. Remote Sens. Environ. 1998. 63 (2) 95-100.
  7. T. Hame, I. Heiler, and J. S. Miguel-Ayanz, "An unsupervised change detection and recognition system for forestry", Int. J. Remote Sens. , vol. 19, pp. 1079-1099, 1998.
  8. S Rajkumar, S Kavitha,"Redundancy Discrete Wavelet Transform and Contourlet Transform for Multimodality Medical Image Fusion with Quantitative Analysis", Third International Conference on Emerging Trends in Engineering and Technology, pp. 134-139.
  9. A. Singh, "Digital change detection techniques using remotely sensed data", Int. J. Remote Sens. , vol. 10, no. 6, pp. 989-1003, 1989.
  10. E. J. M. Rignot and J. J. Van Zyl, "Change detection techniques for ERS-1 SAR data", IEEE Trans. Geosci. Remote Sens. , vol. 31, no. 4, pp. 896-906, Jul. 1993.
  11. Y. Bazi, L. Bruzzone, and F. Melgani, "An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images", IEEE Trans. Geosci. Remote Sens. , vol. 43, no. 4, pp. 874-887, Apr. 2005.
  12. J. Inglada and G. Mercier, "A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis", IEEE Trans. Geosci. Remote Sens. , vol. 45, no. 5, pp. 1432-1445, May 2007.
  13. W. Sezgin and B. Sankur, "A survey over image thresholding techniques and quantitative performance evaluation", J. Electron. Imag. , vol. 13, no. 1, pp. 146-165, Jan. 2004.
  14. Yaoguo Zheng, Xiangrong Zhang, Biao Hou and Ganchao Liu, "Using Combined Difference Image and k-Means Clustering for SAR Image hange Detection", Geoscience and Remote sensing Letters. , vol. 11, no. 3, pp. 691-695, Aug. 2013.
  15. Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Andrea Garzelli, Claudia Zoppetti," Nonparametric Change Detection in Multitemporal SAR Images Based on Mean-Shift Clustering", IEEE T. Geoscience and Remote Sensing, vol. 51, no. 4 pp. 2022-2031, April. 2013.
  16. Cyril Carincotte, Stphane Derrode, and Salah Bourennane, "Unsupervised Change Detection on SAR Images Using Fuzzy Hidden Markov Chains", IEEE Trans. Geosci. Remote Sens, VOL. 44, NO. 2, Feb. 2006.
  17. Maoguo Gong, Zhiqiang Zhou and Jingjing Ma, "Change Detection in Synthetic Aperture Radar Images based on Image Fusion and Fuzzy Clustering, " IEEE Trans. Image Process. , vol. 21, no. 4, pp. 2141-2151, Apr. 2012.
  18. J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function. New York: Plenum, 1981.
  19. L. Yang, B. L. Guo, W. Ni, " Multimodality Medical Image Fusion Based on Multiscale Geometric Analysis of Contourlet Transform", Elsevier Science Publishers, vol. 72, pp. 203-211, December 2008.
  20. J. Cihlar, T. J. Pultz, and A. L. Gray, "Change detection with synthetic aperture radar", Int. J. Remote Sens. , vol. 13, pp. 401-414, 1992.
  21. R. J. Dekker, "Speckle filtering in satellite SAR change detection imagery", Int. J. Remote Sens. , vol. 19, pp. 1133-1146, 1998.
  22. K. Grover and S. Quegan, "Quantitative estimation of tropical forest cover by SAR", IEEE Trans. Geosci. Remote Sens . , vol. 37, no. 1, pp. 479-490, Jan. 1999.
  23. C. Deledalle, L. Denis, and F. Tupin, "Iterative weighted maximum likelihood denoising with probabilistic patch-based weights", IEEE Trans. Image Process. , vol. 18, no. 12, pp. 2661-2672, Dec. 2009.
  24. R. O. Duda and P. E. Hart,"Pattern Classification and Scene Analysis". Hoboken, NJ, USA: Wiley, 1973.
  25. K. Fukunaga and L. D. Hostetler, "The estimation of the gradient of a density function, with applications in pattern recognition", IEEE Trans. Inf. Theory, vol. IT-21, no. 1, pp. 32-40, Jan. 1975.
  26. M. Fashing and C. Tomasi, "Mean shift is a bound optimization", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 27, no. 3, pp. 471-474, Mar. 2005.
  27. Y. Cheng, "Mean shift, mode seeking, and clustering", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 17, no. 8, pp. 790?799, Aug. 1995.
  28. D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 5, pp. 603-619, May 2002.
  29. W. Skarbek, "Generalized Hilbert scan in image printing", in Theoretica Foundations of Computer Vision," R. Klette and W. G. Kropetsh, Eds. Berlin, Germany: Akademik Verlag, 1992.
  30. R. Dafner, D. Cohen-Or, and Y. Matias, "Context-based space filling curves", Comput. Graph. Forum, vol. 19, no. 3, 2000.
  31. J. Hungershfer and J. Wierum, "On the quality of partitions based on space-filling curves", in Int. Conf. Computational Science Amsterdam, The Netherlands, vol. 21 no. 24, pp. 36-45, Apr. 2002.
  32. S. Krinidis and V. Chatzis, "A robust fuzzy local information C-means clustering algorithm", IEEE Trans. Image Process. , vol. 19, no. 5, pp. 1328-1337, May 2010.
  33. J. D. Villasenor, D. R. Fatland, and L. D. Hinzman, "Change detection on Alaska north slope using repeat-pass ERS-1 SAR imagery", IEEE Trans. Geosci. Remote Sens. , vol. 31, pp. 227-236, 1993.
  34. L. G. Brown, "A survey of image registration techniques", ACMComput. Surv. , vol. 24, no. 4, 1992.
  35. B. Zitov and J. Flusser, "Image registration methods: A survey", Image Vis. Comput. , vol. 21, pp. 977-1000, 2003.
  36. L. Ibez, W. Schroeder, L. Ng, and J. Cates, "The ITK Software Guide: The Insight Segmentation and Registration Toolkit", 1. 4 ed: Kitware, Inc. , 2003.
  37. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, "A feature based, robust, hierarchical algorithm for registering pairs of imagesof the curved human retina", IEEE Trans. Pattern Anal. Mach. Intell. , vol. 24, no. 3, pp. 347-364, Mar. 2002.
Index Terms

Computer Science
Information Sciences

Keywords

Synthetic Aperture Radar(sar) Difference Image Image Fusion Image Change Detection Algorithms