CFP last date
20 February 2025
Reseach Article

The Selective Hydrogenolysis of Sucrose to Glycerol over Ni, W, cu supported on Kieselguhr Catalyst

Published on September 2016 by Tanuja Srivastava, Dc Saxena, Renu Sharma
International Conference on Advances in Emerging Technology
Foundation of Computer Science USA
ICAET2016 - Number 12
September 2016
Authors: Tanuja Srivastava, Dc Saxena, Renu Sharma
9e9ecb77-f777-4d14-bc9d-94b7033d3632

Tanuja Srivastava, Dc Saxena, Renu Sharma . The Selective Hydrogenolysis of Sucrose to Glycerol over Ni, W, cu supported on Kieselguhr Catalyst. International Conference on Advances in Emerging Technology. ICAET2016, 12 (September 2016), 10-14.

@article{
author = { Tanuja Srivastava, Dc Saxena, Renu Sharma },
title = { The Selective Hydrogenolysis of Sucrose to Glycerol over Ni, W, cu supported on Kieselguhr Catalyst },
journal = { International Conference on Advances in Emerging Technology },
issue_date = { September 2016 },
volume = { ICAET2016 },
number = { 12 },
month = { September },
year = { 2016 },
issn = 0975-8887,
pages = { 10-14 },
numpages = 5,
url = { /proceedings/icaet2016/number12/25954-t195/ },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Proceeding Article
%1 International Conference on Advances in Emerging Technology
%A Tanuja Srivastava
%A Dc Saxena
%A Renu Sharma
%T The Selective Hydrogenolysis of Sucrose to Glycerol over Ni, W, cu supported on Kieselguhr Catalyst
%J International Conference on Advances in Emerging Technology
%@ 0975-8887
%V ICAET2016
%N 12
%P 10-14
%D 2016
%I International Journal of Computer Applications
Abstract

Low molecular weight alcohols were selectively produced form sugars such as sucrose; glucose and fructose by means of Ni,W,Cu/ kieselguhr catalyst in aqueous solution under hydrogen gas atmosphere 50atm. Nickel catalyst promoted by tungsten (w) and copper (cu) supported on kieselguhr was synthesized for the hydrogenolysis of sucrose by simultaneous co-precipitation and digestion method. The catalyst provide high product yield under milder conditions. Optimization of catalyst preparation variables included temperature of catalyst during Na2Co3 addition, addition time of Na2Co3 solution on the catalyst and digestion time after addition of aqueous solution of Na2Co3. A 3X5 experimental design has been adopted to study the effect of process variables on glycerol yield. A linear second order model has been developed to optimize and to study the interaction effects on glycerol yield in the catalytic hydrogenolysis of sucrose. The maximum glycerol yield ( 35. 54%) was obtained with temp of catalyst during sodium carbonate addition (82. 069 0C), addition time of Na2CO3 solution of the catalyst (114. 83 min. ) and digestion time after addition of aqueous solution of Na2CO3 (119. 612 min. )

References
  1. Rodiansono and Shimazu, S. 2013. The selective Hydrogenolysis of sucrose to sorbitol and polyols over nickel-tin nanoparticle catalyst supported on aluminium hydroxide published in prosiding Semirata FMIPA universitas Lampung. Pp. 351- 358.
  2. Zartman, W. H. and Adkiens, H. 1933. Hydrogenolysis of Sugars. J. Am . Chem. Soc. , vol. 55, pp. 45559- 45563.
  3. Ling, G. V. , Driessen, A. J. , Piet, A. , Vlugter, J. C. 1970. Continuous Production of Glycerol by Catalytic High Pressure Hydrogenolysis of Sucrose. Ind. Eng. Chem. Prod. Res. Dev. , vol. 9 (2), pp. 210-212.
  4. Saxena, U. , Dwivedi, N. and Vidyarthi, S. R. 2005. Effect of Catalyst Constituents on (Ni, Mo, and Cu)/Kieselguhr-Catalyzed Sucrose Hydrogenolysis. Ind. Eng. Chem. Res. , Vol. 44, pp. 1466-1473.
  5. Schuster, L. and Himmele (to BASF), W. 1993. EU 0,34, 561 B1.
  6. Guczi, L. , Schay, Z. , Stefler, G. , Liotta, L. F. 1999. Pumice-Supported Cu-Pd Catalysts: Influence of Copper on the Activity and Selectivity of Palladium in the Hydrogenation of Phenylacetylene and But-1-ene. J. Catal, vol. 182, pp. 456 – 462.
  7. Panaritiaa, N. , Biancoa, A. D. , Pieroa, G. D. , Marchionnab, M. , Carnitic, P. 2000. Petroleum Residue Upgrading with Dispersed Catalysts: Part 2. Effect of Operating Conditions. Appl. Catal. A: General, vol. 204, pp. 215 – 222.
  8. Vos, B. , Poels, E. , Bliek, A. 2001. Impact of Calcination Conditions on the Structure of Alumina-Supported Nickel Particles. . J. Catal. , vol. 198, pp. 77-78.
  9. Ningaa, W. , Shenb, H. , Liua, H. 2001. Study of the Effect of Preparation method on CuO-ZnO-Al2O3 Catalyst. Appl. Catal. A: General, vol. 211, pp. 153 – 157.
  10. Li, H. , Wang, W. , Deng, J. F. 2000. Glucose Hydrogenation to Sorbitol over a Skeletal Ni-P Amorphous Alloy Catalyst (Raney Ni-P). J. Catal, vol. 1, pp. 257-260.
  11. Muller, P. , Rimmelein, P. , Hindermann, J. P. , Kieffer, R. , Kienmann, A. 1991. Development of Slurry Reactor for Sucrose Hydrogenolysis. Chem. Abs. , 1836895.
  12. Tronconi, E. , Ferlazo, N. , Farzatti, P. , Pasgum, I. , Casoli, B. 1992. Use of Batch & Continuous Reactor for Sorbitol Hydrogenolysis. Chem. Eng. Sci. , vol. 47, pp. 2451-2456.
  13. Kabea, T. , Aoyama, Y. , Wang, D. , Ishihara, A. , Qian, W. , Hosoya, M. , Zhang, Q. 2001. Appl. Catal. A: General, vol. 209, pp. 237-247.
  14. Srivastava, T. , Saxena, D. C. 2012. Optimization of constituents of (Ni, MO,Cu)/kieselguhr catalyst by response surface methodology for Glycerol production by hydrogenolysis of sucrose. International Journal of Computers & Technology, vol. 2, pp. 24-40.
  15. Cochran, W. G. , Cox, G. M. , Bradley, R. A. , Kendall, D. G. , Hunter, J. S. , Watson, G. S. , Experimental Designs, Eds. ; John Wiley and Sons, New York, (1957).
  16. Srivastava, D. , Garg, R. , Kumar, P. , Saxena, D. C. , Mathur, G. N. 2000. Optimization studies of blend composition and ageing parameters for making LDPE/HDPE/LLDPE films by response surface methodology. Vol. 283, pp. 81-87.
  17. Srivastava, D. , Saxena, D. C. , Mathur, G. N. 1999. Optimization studies on the development of nylon-6 films with high tensile strength. J. Macromolecular Sci. -Pure and Appl. Chem, vol. A36, pp. 1491- 1501.
  18. Srivastava, T. , Saxena, D. C. 2011. Process optimization of (Ni,MO,Cu)/kieselguhr catalyst by Response surface methodology for Glycerol production by hydrogenolysis of sucrose. International Journal of Engineering Science & Technology, vol. 3, pp. 7773-7788.
  19. Bond, G. C. Catalysis by Metals,Academic Press: London, 1962, pp. 395.
Index Terms

Computer Science
Information Sciences

Keywords

Hydrogenolysis Optimization Glycerol Yield Kieselguhr Catalyst Rsm