CFP last date
20 January 2025
Reseach Article

Image Stitching based on Feature Extraction Techniques: A Survey

by Ebtsam Adel, Mohammed Elmogy, Hazem Elbakry
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 99 - Number 6
Year of Publication: 2014
Authors: Ebtsam Adel, Mohammed Elmogy, Hazem Elbakry
10.5120/17374-7818

Ebtsam Adel, Mohammed Elmogy, Hazem Elbakry . Image Stitching based on Feature Extraction Techniques: A Survey. International Journal of Computer Applications. 99, 6 ( August 2014), 1-8. DOI=10.5120/17374-7818

@article{ 10.5120/17374-7818,
author = { Ebtsam Adel, Mohammed Elmogy, Hazem Elbakry },
title = { Image Stitching based on Feature Extraction Techniques: A Survey },
journal = { International Journal of Computer Applications },
issue_date = { August 2014 },
volume = { 99 },
number = { 6 },
month = { August },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume99/number6/17374-7818/ },
doi = { 10.5120/17374-7818 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:27:27.384074+05:30
%A Ebtsam Adel
%A Mohammed Elmogy
%A Hazem Elbakry
%T Image Stitching based on Feature Extraction Techniques: A Survey
%J International Journal of Computer Applications
%@ 0975-8887
%V 99
%N 6
%P 1-8
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Image stitching (Mosaicing) is considered as an active research area in computer vision and computer graphics. Image stitching is concerned with combining two or more images of the same scene into one high resolution image which is called panoramic image. Image stitching techniques can be categorized into two general approaches: direct and feature based techniques. Direct techniques compare all the pixel intensities of the images with each other, whereas feature based techniques aim to determine a relationship between the images through distinct features extracted from the processed images. The last approach has the advantage of being more robust against scene movement, faster, and has the ability to automatically discover the overlapping relationships among an unordered set of images. The purpose of this paper is to present a survey about the feature based image stitching. The main components of image stitching will be described. A framework of a complete image stitching system based on feature based approaches will be introduced. Finally, the current challenges of image stitching will be discussed.

References
  1. Ward, G. (2006). Hiding seams in high dynamic range panoramas. In R. W. Fleming, & S. Kim (Ed. ), APGV. 153, p. 150. ACM.
  2. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60, 91-110.
  3. Szeliski, R. (2010). Computer Vision: Algorithms and Applications (1st Ed. ). New York, NY, USA: Springer-Verlag New York, Inc.
  4. Brown, L. G. (1992, Dec). A Survey of Image Registration Techniques. ACM Comput. Surv, 24(4), 325-376.
  5. Arth, C. , Klopschitz, M. , Reitmayr, G. , & Schmalstieg, D. (2011). Real-time self-localization from panoramic images on mobile devices. ISMAR (pp. 37-46). IEEE.
  6. Ajmal, M. , Ashraf, M. , Shakir, M. , Abbas, Y. , & Shah, F. (2012). Video Summarization: Techniques and Classification. In L. Bolc, R. Tadeusiewicz, L. Chmielewski, & K. Wojciechowski (Eds. ), Computer Vision and Graphics (Vol. 7594, pp. 1-13). Springer Berlin Heidelberg.
  7. WIKIPEDIA. (n. d. ). http://en. wikipedia. org/wiki/File:Rochester_NY. jpg. http://en. wikipedia. org/wiki/File:Rochester_NY. jpg.
  8. K. Shashank, N. G. (MarCh 2014). A Survey and Review over Image Alignment and Stitching Methods. The International Journal of Electronics & Communication Technology (IJECT), ISSN: 2230-7109 (Online).
  9. Zhang, Z. (2000, Nov). A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. , 22(11), 1330-1334.
  10. Deng, Y. , & Zhang, T. (September 07, 2003). Generating Panorama Photos.
  11. Szeliski, R. (December 10, 2006). Image Alignment and Stitching. Tech. rep.
  12. Bergen, J. R. , Anandan, P. , Hanna, K. J. , & Hingorani, R. (1992). Hierarchical Model-Based Motion Estimation. Proceedings of the Second European Conference on Computer Vision (pp. 237-252). London, UK, UK: Springer-Verlag.
  13. Yanfang Li, Y. W. (2008). Automatic Image Stitching Using SIFT.
  14. Bay, H. , Ess, A. , Tuytelaars, T. , & Van Gool, L. (2008, Jun). Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. , 110(3), 346-359.
  15. Rosten, E. , & Drummond, T. (2006). Machine Learning for High-speed Corner Detection. Proceedings of the 9th European Conference on Computer Vision - Volume Part I (pp. 430-443). Berlin, Heidelberg: Springer-Verlag.
  16. Ke, Y. , & Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local image descriptors. (pp. 506-513).
  17. Dalal, N. , & Triggs, B. (2005). Histograms of Oriented Gradients for Human Detection. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01 (pp. 886-893). Washington, DC, USA: IEEE Computer Society.
  18. Harris, C. , & Stephens, M. (1988). A combined corner and edge detector. In Proc. of Fourth Alvey Vision Conference, (pp. 147-151).
  19. A. V. Kulkarni1, J. V. (September-2013). Object recognition with ORB and its Implementation on FPGA. International Journal of Advanced Computer Research, 2277-7970.
  20. Mrs. Hetal M. Patel, A. P. (November- 2012). Comprehensive Study and Review of Image Mosaicing Methods. International Journal of Engineering Research & Technology (IJERT), Vol. 1 Issue 9, ISSN: 2278-0181.
  21. Park, S. C. , Park, M. K. , & Kang, M. G. (2003, may). Super-resolution image reconstruction: a technical overview. Signal Processing Magazine, IEEE, 20(3), 21-36.
  22. Faraj Alhwarin, C. W. (2008). Improved SIFT-Features Matching for Object Recognition. In E. Gelenbe, S. Abramsky, & V. Sassone (Ed. ), BCS Int. Acad. Conf. (pp. 178-190). British Computer Society.
  23. Mikolajczyk, K. , & Schmid, C. (2005, Oct). A Performance Evaluation of Local Descriptors. IEEE Trans. Pattern Anal. Mach. Intell. , 27(10), 1615-1630.
  24. Oyallon, E. (February 25, 2013). An analysis and implementation of the SURF method, and its comparison to SIFT.
  25. Fischler, M. A. , & Bolles, R. C. (June 1981). "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography".
  26. Mclauchlan, P. F. , Jaenicke, A. , & Xh, G. G. (2000). Image mosaicing using sequential bundle adjustment. In Proc. BMVC, (pp. 751-759).
  27. Mrs. Hetal M. Patel, A. P. (May - 2013). Panoramic Image Mosaicing. International Journal of Engineering Research & Technology, 2278-0181.
  28. Brown, M. , & Lowe, D. G. (2007, Aug). Automatic Panoramic Image Stitching Using Invariant Features. Int. J. Comput. Vision, 74(1), 59-73.
  29. Anat Levin, A. Z. , & Weiss, Y. (2000). Seamless Image Stitching in the Gradient Domain. The Hebrew University of Jerusalem.
  30. Deepak Jain, G. S. (2012). Image Mosaicing using corner techniques. International Journal of Engineering Research & Technology (IJERT).
  31. Vimal Singh Bind, P. R. (2013). A Robust Technique for Feature-based Image Mosaicing using Image Fusion.
  32. Brown, M. , & Lowe, D. G. (2003). Recognising Panoramas. Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume 2, pp. 1218-. Washington, DC, USA: IEEE Computer Society.
  33. Eden, A. , Uyttendaele, M. , & Szeliski, R. (2006). Seamless Image Stitching of Scenes with Large Motions and Exposure Differences. Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (pp. 2498-2505). Washington, DC, USA: IEEE Computer Society.
  34. Russol Abdelfatah, H. O. (2013). Automatic Seamless of Image Stitching. International knowledge shating platform, 4, ISSN (Paper) 2222-1727.
  35. Li Jin, W. Y. (2012). Image Mosaic Based on Simplified SIFT. International Conference on Mechanical Engineering and Automation, Vol. 10.
  36. Adelson, E. H. , Anderson, C. H. , Bergen, J. R. , Burt, P. J. , & Ogden, J. M. (1984). Pyramid methods in image processing. RCA Engineer, 29(6), 33-41.
  37. Burt, P. J. , Edward, & Adelson, E. H. (1983). The Laplacian Pyramid as a Compact Image Code. IEEE Transactions on Communications, 31, 532-540.
  38. Medha V. Wyawahare, D. P. , & Abhyankar, H. K. (September 2009). Image Registration Techniques: An overview. International Journal of Signal Processing, Image Processing and Pattern Recognition, Vol. 2.
  39. Baker, S. , & Matthews, I. (2004). Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision, 56(3), 221-255.
Index Terms

Computer Science
Information Sciences

Keywords

Image stitching/mosaicing panoramic image features based detection SIFT SURF image blending.