We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Enumeration of Basic Hamilton Cycles in the Mangoldt Graph

by Levaku Madhavi, Tekuri Chalapathi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 99 - Number 4
Year of Publication: 2014
Authors: Levaku Madhavi, Tekuri Chalapathi
10.5120/17363-7882

Levaku Madhavi, Tekuri Chalapathi . Enumeration of Basic Hamilton Cycles in the Mangoldt Graph. International Journal of Computer Applications. 99, 4 ( August 2014), 44-48. DOI=10.5120/17363-7882

@article{ 10.5120/17363-7882,
author = { Levaku Madhavi, Tekuri Chalapathi },
title = { Enumeration of Basic Hamilton Cycles in the Mangoldt Graph },
journal = { International Journal of Computer Applications },
issue_date = { August 2014 },
volume = { 99 },
number = { 4 },
month = { August },
year = { 2014 },
issn = { 0975-8887 },
pages = { 44-48 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume99/number4/17363-7882/ },
doi = { 10.5120/17363-7882 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:27:20.497030+05:30
%A Levaku Madhavi
%A Tekuri Chalapathi
%T Enumeration of Basic Hamilton Cycles in the Mangoldt Graph
%J International Journal of Computer Applications
%@ 0975-8887
%V 99
%N 4
%P 44-48
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Mangoldt graph Mn is an arithmetic function, namely, Mangoldt function ?(n), n ? 1 an integer. In this paper the notion of a basic Hamilton cycles in Mn is introduced and their number is enumerated.

References
  1. Apostol, T. M. , - Introduction to Analytic Number Theory, Springer international student Edition (1989).
  2. Berrizbeitia P. and Giudici R. E. , - Counting pure k – cycles in sequences of Cayley Graphs, Discrete Math. , 149, 11-18 (1996).
  3. Berrizbeitia P. and Giudici R. E. ,; - On Cycles in the sequence of unitary Cayley graphs. Reporte Techico No. 01-95, Universibad Simon Bolivar, Dpto, de Mathematics, Caracas, Venezuela (1995).
  4. Bondy J. A. and Murty U. S. R. ; - Graph Theory with Applications, Macmillan, London (1976).
  5. Dejter I. and Giudici R. E. ; On unitary Cayley graphs, JCMCC, 18 121-124 (1995).
  6. Dickson E. – History of Theory of Numbers, Vol. 1, Chelsea Publishing Company (1952).
  7. Madhavi L. and Maheswari B. ; - Enumeration of Hamilton cycles and triangles in quadratic residue Cayley graphs, Chamchuri J. Math. , 1(1), 95-103 (2009).
  8. Madhavi, L. , and Maheswari, B. , - Edge cover Domination in Mangoldt Graph, MEJS, 3(1): 37-51, (2011).
  9. Maheswari, B. , and Madhavi, L. , - Vertex Domination in Mangoldt Graph, Journal of APSMS, Vol(1), NO. 2, pp 184-190, (2008).
  10. Maheswari, B. , and Madhavi, L. , - Counting of Triangles in Mangoldt Graph, J. Pure and Appl. , Phys. Vol. 20, NO. 3, pp. 165-169, July-Sep (2008).
  11. Nathanson, B. Melvyn. , - Connected Components of Arithmetic Graphs, Monat. fur. Math, 29(1980).
  12. Vasumathi, N. , - Number Theoretic Graphs, Doctoral Thesis submitted to S. V. University, Tirupati, India, (1994).
Index Terms

Computer Science
Information Sciences

Keywords

Graph Theory Discrete Mathematics