CFP last date
20 January 2025
Reseach Article

Realization of Combinational Multiplier using Quantum Cellular Automata

by Subhashee Basu, Aditi Bal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 99 - Number 19
Year of Publication: 2014
Authors: Subhashee Basu, Aditi Bal
10.5120/17478-8333

Subhashee Basu, Aditi Bal . Realization of Combinational Multiplier using Quantum Cellular Automata. International Journal of Computer Applications. 99, 19 ( August 2014), 1-6. DOI=10.5120/17478-8333

@article{ 10.5120/17478-8333,
author = { Subhashee Basu, Aditi Bal },
title = { Realization of Combinational Multiplier using Quantum Cellular Automata },
journal = { International Journal of Computer Applications },
issue_date = { August 2014 },
volume = { 99 },
number = { 19 },
month = { August },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume99/number19/17478-8333/ },
doi = { 10.5120/17478-8333 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:28:35.948177+05:30
%A Subhashee Basu
%A Aditi Bal
%T Realization of Combinational Multiplier using Quantum Cellular Automata
%J International Journal of Computer Applications
%@ 0975-8887
%V 99
%N 19
%P 1-6
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Quantum dot cellular automata(QCA) shows promise as a post silicon CMOS,low power computational technology. Nevertheless,to generalize QCA for next generation digital devices,the ability to implement conventional programmable circuits based on NOR,AND and OR gates is necessary. We devise a new QCA structure,the QCA multiplier,employing the five quantum dot QCA cell. The structure can multiply two 4 bit binary number. Tihis work is motivated by the fact that implementing combinational multiplier using QCA will reduce its area and consequently its heat dissipation. The efficacy of our framework is that it uses QCA majority gates as its primitives.

References
  1. Ja'Ja', S. M. Wu. ," A new approach to realize partially symmetric functions". Tech. Rep. SRCTR86-54, Dept. EE, University of Maryland, 1986.
  2. C. S. Lent, P. D. Taugaw, W. Porod , G. H. Berstein. ," Quantum Cellular Automata. Nanotechnology", vol. 4, no. 1, pp49-57,January 1993.
  3. A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Sinder. ," Realization of a Functional Cell for Quantum Dot Cellular Automata", Science, vol. 277, no. 5328, pp 928-930,August 1997.
  4. C. S. Lent, P. D. Taugaw. " A Device Architecture for Computing with Quantum Dots", Proceedings IEEE, vol. 85, no. 4, pp. 541-557,April 1997
  5. I. Amlani, A. O. Orlov, G. Toth, C. S. Lent, G. H. Bernstein, G. L. Sinder. ," Digital Logic Gate using Quantum Dot Cellular Automata", Science, vol. 284, no. 5412, pp. 289-291,April 1999.
  6. M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C. S. Lent, G. H. Bernstein, G. L. Snider, F. Peiris. ," Quantum Dot Cellular Automata at a Molecular Scale", Annals of the New York Academy of Sciences, vol. 960, pp. 225-239,2002.
  7. Whitney J. Townsend, Jacob A. Abraham. " Complex Gate Implementations for Quantum Dot Cellular Automata", 4th IEEE Conference on Nanotechnology , pp. 625-627,August 2004.
  8. R. Zhang, K. Walus, W. Wang, G. A. Jullien. ," A Method of Majority Logic Reduction for Quantum Cellular Automata", IEEE Trans on Nanotechnology, vol. 3, no. 4, pp. 443- 450, Dec 2004.
  9. K. Walus, G. Schulhof, G. A. Jullien, R. Zhang, W. Wang. ," Circuit Design Based on Majority Gates for Application with Quantum Dot Cellular Automata", IEEE Trans Signals, Systems and Computers, vol. 2, pp. 1354-1357,Nov 2004.
  10. M. Momenzadeh, M. B. Tahoori, J. Huang, F. Lombardi. ," Characterization, Test and Logic Synthesis of AND-RINVERTER (AOI) Gate Design for QCA Implementation", IEEE Trans on Computer Aided Design of Integrated Circuits and Systems, vol. 24, no. ,pp. 1881-1893, December 2005.
  11. H. Rahaman, B. K. Sikdar, D. K. Das. " Synthesis of Symmetric Boolean Functions Using Quantum Cellular Automata", International Conference on Design and Test of Integrated Systems in Nanoscale Technology (DTIS 06), pp. 119-124, Tunis, Tunisia.
  12. Z. Y. Xu ,M. Fenga ,W. M. Zhang. " Universal Quantum Computation With Quantum-Dot Cellular Automata In Decoherence-Free Subspace", Quantum Information and Computation, Vol. 0,No. 0000-000c Rinton Press,2008.
  13. Mostafa Rahimi Azghadi*, O. Kavehei, K. Navi. "A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders"
  14. Heumpil Cho. " Adder Designs and Analyses for Quantum- Dot Cellular Automata", IEEE Transactions on Nanotechnology, Vol. 6, No. 3, May 2007
  15. Heumpil Cho, Earl E. Swartzlander. " Adder and multiplier Design in Quantum-Dot Cellular Automata", IEEE Transactions on Computers, Vol. 58, No. 6, Jun 2009
  16. Geza Toth* , Craig S. Lent. " Quantum computing with quantum-dot cellular automata", Physical Review A, Volume 63, 052315
  17. Pijush Kanti Bhattacharjee. " Use of Symmetric Functions Designed by QCA Gates for Next Generation IC", International Journal of Computer Theory and Engineering, Vol. 2, No. ,April 2010 1793-8201
  18. Hema Sandhya Jagarlamudi, Mousumi Saha, Pavan Kumar Jagarlamudi. " Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures", World Academy of Science, Engineering and Technology 60, 2011.
  19. C. Rovetta , M. Mouffron. " De Bruijan sequences and complexity of symmetric functions", Cryptography and Communications journal, vol. 3, no. 4, pp. 207-225,(December,2011).
  20. S. Basu, S. Bhattacharjee. " Implementation of Symmetric Functions Using Quantum Dot Cellular Automata", ICACNI,2014
Index Terms

Computer Science
Information Sciences

Keywords

QCA CMOS multiplier