International Journal of Computer Applications |
Foundation of Computer Science (FCS), NY, USA |
Volume 99 - Number 16 |
Year of Publication: 2014 |
Authors: Dipali Bhosale, Roshani Ade, P. R. Deshmukh |
10.5120/17456-8202 |
Dipali Bhosale, Roshani Ade, P. R. Deshmukh . Feature Selection based Classification using Naive Bayes, J48 and Support Vector Machine. International Journal of Computer Applications. 99, 16 ( August 2014), 14-18. DOI=10.5120/17456-8202
One way to improve accuracy of a classifier is to use the minimum number of features. Many feature selection techniques are proposed to find out the most important features. In this paper, feature selection methods Co-relation based feature Selection, Wrapper method and Information Gain are used, before applying supervised learning based classification techniques. The results show that Support vector Machine with Information Gain and Wrapper method have the best results as compared to others tested.