CFP last date
20 January 2025
Reseach Article

Metamaterials: A Leading Edge of Science and Technology

by Vikrant Thakur, Dhruva Chaudhary
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 98 - Number 9
Year of Publication: 2014
Authors: Vikrant Thakur, Dhruva Chaudhary
10.5120/17213-7441

Vikrant Thakur, Dhruva Chaudhary . Metamaterials: A Leading Edge of Science and Technology. International Journal of Computer Applications. 98, 9 ( July 2014), 29-34. DOI=10.5120/17213-7441

@article{ 10.5120/17213-7441,
author = { Vikrant Thakur, Dhruva Chaudhary },
title = { Metamaterials: A Leading Edge of Science and Technology },
journal = { International Journal of Computer Applications },
issue_date = { July 2014 },
volume = { 98 },
number = { 9 },
month = { July },
year = { 2014 },
issn = { 0975-8887 },
pages = { 29-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume98/number9/17213-7441/ },
doi = { 10.5120/17213-7441 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:25:47.131290+05:30
%A Vikrant Thakur
%A Dhruva Chaudhary
%T Metamaterials: A Leading Edge of Science and Technology
%J International Journal of Computer Applications
%@ 0975-8887
%V 98
%N 9
%P 29-34
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This review paper is based on the brief history, classification and utilities of metamaterial in various fields. An introduction to metamaterials followed by a detailed elaboration on how to design unprecedented electromagnetic properties of metamaterials is presented. Further we discussed the different structure approaches of metamaterials and their advantages. Finally, we offer an outlook on future directions of metamaterials research.

References
  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of epsilon and mu. " Soviet Physics Uspekhi,vol. 10, no. 4, pp. 509–514, 1968.
  2. Merrian- Webster Collegiate Dictionary 10th Edition, Massachusetts, pp. 730, 1997
  3. Pendry, J. B. , A. J. , Stewart, W. J. , Ypungs, I: Extremely low frequency plasmons in metallic mesostructure, Phys. Rev. Lett. 76, 4773-4776, 1996.
  4. Pendry, J. B. , Holden, A. J. , Robbins, D. J. , Stewart, W. J; Magnetism from conductors and enhanced non linear phenomenon. IEEE Trans. Micro Theory Tech. 47, 2075-2084, 1999
  5. Leonhardt, U. : Optical conformal mapping Science 312, 1777, 2006
  6. Jiang, W. X. , Cui, T. J. , Chin, J. Y. , Chang, Q. , Yu, G. X. , Yang, X. M, Liu, R. : Equal thickness invisible cloaks for arbitrary polygonal – cylindrical regions. Eur Phys. J. Appl. Phys 46, 20702,2009
  7. Kwon, D. H. , Werner, D. H. : Transformation optical designs for wave collimators, flat lenses and right angle bends. New J. Phys. 10. 115023, 2008
  8. Leonhardt, U,: Notes on conformal invisibility devices. New J. Phys. 8, 118, 2006
  9. R. M. Walser, 'Electromagnetic metamaterials, ''in Proc SPIE – Complex Medium 11; Beyond Linear Isotropic Dielectrics, 2001, vol. 4467,pp 1-15
  10. Smith, D. R. , Mock, J. J. , Starr, A. F. , Schurig, D. : Gradient index metamaterials. Phys. Rev. E, vol. 71, Issue. 3, pp. 036609, 2005
  11. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, BExtremely low frequency plasmons in metallic mesostructures,[ Phys. Rev. Lett. , vol. 76, no. 25, pp. 4773–4776, Jun. 1996.
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, BMagnetism from conductors and enhanced nonlinear phenomena,[ IEEE Trans. Microw. Theory Tech. , vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
  13. D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, BCut-wire-pair structures as two-dimensional magnetic metamaterials,[ Opt. Lett. , vol. 16, no. 19, pp. 15 185–15 190, Sep. 2008.
  14. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, BCut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,[ Opt. Lett. , vol. 30, no. 23, pp. 3198–3200, Dec. 2005.
  15. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, BNegative-index metamaterial at 780 nm wavelength, [Opt. Lett. , vol. 32, no. 1, pp. 53–55, Jan. 2007.
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, BLow frequency plasmons in thin-wire structures,[ J. Phys. , Condens. Matter, vol. 10, no. 22, pp. 4785–4809, Jun. 1998.
  17. D. Schurig, J. J. Mock, and D. R. Smith, BElectric-field-coupled resonators for negative permittivity metamaterials,[ Appl. Phys. Lett. , vol. 88, no. 4, pp. 041109-1–041109-3, Jan. 2006.
  18. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, BElectrically resonant terahertz metamaterials: Theoretical and experimental investigations,[ Phys. Rev. B, Condens. Matter, vol. 75,no. 4, pp. 041102-1–041102-4, Jan. 2007.
  19. V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, and A. Kildishev, BNegative index of refraction in optical metamaterials,[ Opt. Lett. , vol. 30, no. 24, pp. 3356–3358, Dec. 2005.
  20. C. Imhof and R. Zengerle, BPairs of metallic crosses as a left-handed metamaterial with improved polarization properties,[ Opt. Express, vol. 14, no. 18, pp. 8257–8262, Sep. 2006.
  21. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, BExperimental demonstration of nearinfrared negative-index metamaterials,[ Phys. Rev. Lett. , vol. 95, no. 13, pp. 137 404-1–137 404-4, Sep. 2005.
  22. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, BExtremely low frequency plasmons in metallic mesostructures,[ Phys. Rev. Lett. , vol. 76, no. 25, pp. 4773–4776, Jun. 1996.
  23. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, BMagnetism from conductors and enhanced nonlinear phenomena,[ IEEE Trans. Microw. Theory Tech. , vol. 47, no. 11, pp. 2075–2084, Nov. 1999.
  24. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, BComposite medium with simultaneously negative permeability and permittivity,[ Phys. Rev. Lett. , vol. 84, no. 18, pp. 4184–4187, May 2000.
  25. Grbic,A. Eleftheriadesm. G. V :Overcomimg the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92,p. 117403,2004.
  26. Fang,N. et all,'Sub-diffraction limited optical imaging with a silver superlens, 'Science,vol. 308,no. 5721,pp. 534-537,2005.
  27. Igor I. , Smolyaninov, Yu-Ju Hang,Christopher C. Davis, "Magnifying superlens in the visible frequency range'', Science vol 315, no. 5819,pp 1699-1701,2007.
  28. B. D. F. Casse,W. T. lu,Y. J. Huang,E. Gultepe,L. Menon, S. Sridhar,"Super-resolution imaging using a 3-D metamaterial nanolens," Applied Physics Letters ,vol . 96,no 023114,pp 1-3,2010.
  29. E. Wolf and T. Habashy, "Invisible bodies and uniqueness of the inverse scattering problem," J. Mod. opt. 40
  30. Schurig,D. ,Mock,J. J,Justice,B. J. ,et al. : Metamaterial electromagnetic cloak at microwave frequencies science 314,977-980,2006
  31. Liu,R. ,Ji,C. ,Mock,J. J. ,Chin,J. Y. ,Cui,T. J. ,Smith. D. R. :Broadband ground plane cloak. Science 323,366(2009)
  32. J. B. Pendry,D. Schurig and D. R. Smith,"controlling electromagnetic fields," science,vol. 312,pp. 1780-1782,June 2006.
  33. D. Schurig,J. J. Mock,B. J. Justice,S. A. Cummers,J. B. Pendry,A. F. Star and D. R. Smith. " Metamaterials electromagnetic cloak at microwave frequencies ," science,vol. 314,pp. 977-980,November 2006.
  34. Lucas H. Gabrielle, Jamie Cardenas, Carl B. Poratas, Michal Lipson, "Silicon nanostructure cloak operating at optical freq. ," Nature Photonics, vol. 3, pp. 461-463, 20 July 2009.
  35. R. W. Ziolkowski and A. Kipple, "Application of double negative metamaterials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag. , vol. 51, pp. 2626–2640, Oct. 2003.
  36. R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. , vol. 54, no. 7, pp. 2113–2130, July 2006.
  37. Fangming Zhu,Qingchun Lin, Jun Hu, "A Directive Patch Antenna with a Metamaterial Cover," Asia Pacific Microwave Conference Proceeding volume 3. Suzhou china 2005.
  38. Rui Wang, Bo Yuan, Gaofeng Wang, Fan Yi (2007). "Efficient Design of Directive Patch Antennas in Mobile Communications Using Metamaterials," International Journal of Infrared and Millimeter Waves, vol. 28, issue. 8, pp. 639-649, 2007.
  39. http://en. m. wikipedia. org/wiki/metamaterial_absorbser
  40. Sanders G. H. W. , Manz A. Chip-based microsystems for genomic and proteomic analysis. Trends Anal. Chem. 2000; 19:364–378.
  41. Solinas Toldo S. , Lampel S. , Stilgenbauer S. , Nickolenko J. , Benner A. , Dohner H. , Cremer T. , Lichter P. Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes Chromosomes Cancer. 1997; 20:399–407. [PubMed]
  42. Michalet X. , Kapanidis A. N. , Laurence T. , Pinaud F. , Doose S. , Pflughoefft M. , Weiss S. The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 2003;32:161–182. [PubMed]
  43. Webb S. E. D. , Roberts S. K. , Needham S. R. , Tynan C. J. , Rolfe D. J. , Winn M. D. , Clarke D. T. , Barraclough R. , Martin-Fernandez M. L. Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high- and low-affinity epidermal growth factor receptors in A431 cells. Biophys. J. 2008;94:803–819. [PMC free article] [PubMed]
  44. Johnson, R. Colin (2009-07-23). "Metamaterial cloak could render buildings 'invisible' to earthquakes". EETimes. com. Retrieved 2009-09-09.
  45. Barras, Colin (2009-06-26). "Invisibility cloak could hide buildings from quakes". New Scientist. Retrieved 2009-10-20.
  46. Brun, M. ; S. Guenneau, and A. B. Movchan (2009-02-09). "Achieving control of in-plane elastic waves". Appl. Phys. Lett. 94 (61903):1–7. arXiv:0812. 0912. Bibcode: 2009ApPhL. . 94f1903B. doi: 10. 1063/1. 3068491.
  47. Johnson, R. Colin (2009-07-23). "Metamaterial cloak could render buildings 'invisible' to earthquakes". EETimes. com. Retrieved 2009-09-09.
  48. Barras, Colin (2009-06-26). "Invisibility cloak could hide buildings from quakes". New Scientist. Retrieved 2009-10-20.
  49. http://en. m. wikipedia. org/wiki/Acoustic_metamaterials
  50. http://www. pratt. duke. edu/news/wireless-device-converts-lost-energy-electric-power.
  51. Allen M. Hawkes, Alexander R. katko and Steven A. Cummer, "A microwave metamaterial with integrated power harvesting functionality," Applied Physics Letters, vol. 103, pp. 163901, october2013
  52. Nader engheta, ''Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science, Vol. 317, no. 5845, pp. 1698-1702, 21 September 20
  53. llya V. Shadrivov, Polina V. kapitanova, Stanislavi. Maslovski and Yuris. Kivshar, "Metamaterials controlled with light," Phys. Rev. Lett. , vol. 109, pp. 083902-1—083902-4 , 2012
  54. http://en. wikipedia. org/wiki/Tunable_metamaterials#cite_note-Lapine-structure-2.
Index Terms

Computer Science
Information Sciences

Keywords

Metamaterials (MTMs) Left handed media (LHM) Split ring resonator (SRR) Single negative material (SNG) Double negative material (DNG) Metactronics and Electromagnetic band gap (EBG).