CFP last date
20 December 2024
Reseach Article

The Generalized Mandelbrot–Julia Set Form a Class of Complex Cosine Map

by Poonam Negi, Yashwant S. Chauhan, Priti Dimri
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 96 - Number 15
Year of Publication: 2014
Authors: Poonam Negi, Yashwant S. Chauhan, Priti Dimri
10.5120/16867-6761

Poonam Negi, Yashwant S. Chauhan, Priti Dimri . The Generalized Mandelbrot–Julia Set Form a Class of Complex Cosine Map. International Journal of Computer Applications. 96, 15 ( June 2014), 1-8. DOI=10.5120/16867-6761

@article{ 10.5120/16867-6761,
author = { Poonam Negi, Yashwant S. Chauhan, Priti Dimri },
title = { The Generalized Mandelbrot–Julia Set Form a Class of Complex Cosine Map },
journal = { International Journal of Computer Applications },
issue_date = { June 2014 },
volume = { 96 },
number = { 15 },
month = { June },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume96/number15/16867-6761/ },
doi = { 10.5120/16867-6761 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:22:21.073668+05:30
%A Poonam Negi
%A Yashwant S. Chauhan
%A Priti Dimri
%T The Generalized Mandelbrot–Julia Set Form a Class of Complex Cosine Map
%J International Journal of Computer Applications
%@ 0975-8887
%V 96
%N 15
%P 1-8
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The dynamics of transcendental function is one of emerging and interesting field of research nowadays. In this paper we have constructed a series of generalized Mandelbrot and Julia set from cosine function using Agarwal iteration.

References
  1. Agarwal, R. P. , O'Regan, D. and Sahu, D. R. : Iterative construction of fixed points of nearly symptotically nonexpansive mappings, Journal of Nonlinear and Convex Analysis 8(1) (2007), 61-79.
  2. Barnsley, Michael F. , Fractals Everywhere. Academic Press, INC, New York, 1993.
  3. E. F. Glynn, "The Evolution of the Gingerbread Mann", Computers and Graphics 15,4 (1991), 579 -582.
  4. U. G. Gujar and V. C. Bhavsar, "Fractals from in the Complex c-Plane", Computers and Graphics 15, (1991), 441-449.
  5. U. G. Gujar, V. C. Bhavsar and N. Vangala, "Fractals from in the Complex z-Plane", Computers and Graphics 16, 1 (1992), 45-49.
  6. Kumar, Manish. and Rani, Mamta. , A new approach to superior Julia sets. J. nature. Phys. Sci, pp. 148-155, 2005.
  7. Mandelbrot B. B. , "The Fractal Geometry of Nature, W. H. Freeman", New York. ISBN 0-7167-1186-9.
  8. Peitgen, H. O. , Jurgens, H. and Saupe, D. , Chaos and Fractals. New frontiers of science, 1992.
  9. Peitgen, H. O. , Jurgens, H. and Saupe, D. , Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York, Inc, 2004.
  10. Robert L. Devaney, "A First Course in Chaotic Dynamical Systems: Theory and Experiment", Addison-Wesley, 1992. MR1202237.
Index Terms

Computer Science
Information Sciences

Keywords

Agarwal Iteration Complex Dynamics Fixed Point Julia set Mandelbrot Set.