CFP last date
20 January 2025
Reseach Article

Tracking Direction of Human Movement - An Efficient Implementation using Skeleton

by Merina Kundu, Dhriti Sengupta, Jayati Ghosh Dastidar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 96 - Number 13
Year of Publication: 2014
Authors: Merina Kundu, Dhriti Sengupta, Jayati Ghosh Dastidar
10.5120/16855-6722

Merina Kundu, Dhriti Sengupta, Jayati Ghosh Dastidar . Tracking Direction of Human Movement - An Efficient Implementation using Skeleton. International Journal of Computer Applications. 96, 13 ( June 2014), 27-33. DOI=10.5120/16855-6722

@article{ 10.5120/16855-6722,
author = { Merina Kundu, Dhriti Sengupta, Jayati Ghosh Dastidar },
title = { Tracking Direction of Human Movement - An Efficient Implementation using Skeleton },
journal = { International Journal of Computer Applications },
issue_date = { June 2014 },
volume = { 96 },
number = { 13 },
month = { June },
year = { 2014 },
issn = { 0975-8887 },
pages = { 27-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume96/number13/16855-6722/ },
doi = { 10.5120/16855-6722 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:21:39.990742+05:30
%A Merina Kundu
%A Dhriti Sengupta
%A Jayati Ghosh Dastidar
%T Tracking Direction of Human Movement - An Efficient Implementation using Skeleton
%J International Journal of Computer Applications
%@ 0975-8887
%V 96
%N 13
%P 27-33
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Sometimes a simple and fast algorithm is required to detect human presence and movement with a low error rate in a controlled environment for security purposes. Here a light weight algorithm has been presented that generates alert on detection of human presence and its movement towards a certain direction. The algorithm uses fixed angle CCTV camera images taken over time and relies upon skeleton transformation of successive images and calculation of difference in their coordinates.

References
  1. Dhriti Sengupta, Merina Kundu, Jayati Ghosh Dastidar, 2014. "Human Shape Variation - Efficient Implementation using Skeleton", IJACR, Vol-4, No-1, Issue-14, pg-145-150, March-2014.
  2. Blum, H. 1973. "Biological shape and Visual Science", J. Theoretical Biology, Vol 38, pp 205-287.
  3. Comaniciu, D. and Ramesh, V. 2000. "Robust detection and tracking of human faces with an active camera. ", IEEE International Workshop on Visual Surveillance.
  4. Darrell, T. , Gordon, G. , Harwille, M. and Woodfill, J. 1998. "Integrated person tracking using stereo, color, and pattern recognition. " In CVPR, pages 601–609.
  5. Haritaoglu, I. , Harwood, D. and Davis, L. 2000. "Real-time surveillance of people and their activities" PAMI, 22(8):809–830.
  6. August, J. , Siddiqi, K. and Zucker, S. 1999. "Ligature Instabilities and the Perceptual Organization of Shape", Comp. Vision and Image Understanding, Vol 76, No. 3, pp 231--243.
  7. Bai, X. and Latecki, L. 2008. "Path Similarity Skeleton Graph Matching", IEEE Trans. PAMI, Vol 30, No 7, 1282-1292.
  8. Bai, X. , Latecki L. J. and Liu, W. -Y. 2007. "Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution", IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), 29(3), pp. 449-462.
  9. Zhu, S. C. and Yullie, A. L. 1996. "Forms: A Flexible Object Recognition and Modeling System", IJCV, 20(3):187–212.
  10. Siddiqi, K. , Shokoufandeh, A. , Dickinson, S. and Zucker, S. 1999. "Shock graphs and shape matching", IJCV, 35(1):13–32.
  11. Pizer, S. et al. 2003. "Deformable m-reps for 3d medical image segmentation", IJCV, 55(2):85–106.
  12. Sebastian, T. B. , Klein, P. N. and Kimia, B. B. 2004. "Recognition of shapes by editing their shock graphs", PAMI, 26(5):550–571.
  13. Macrini, D. , Siddiqi, K. and Dickinson, S. 2008. "From skeletons to bone graphs: Medial abstraction for object recognition", CVPR.
  14. Song, Y. , Feng, X. and Perona, P. 2000. "Towards detection of human motion", CVPR, volume 1, pages 810–817.
  15. Viola, P. , Jones, M. J. and Snow, D. 2003. "Detecting pedestrians using patterns of motion and appearance" ICCV, pages 734–741.
  16. Fablet, R. and Black, M. J. 2002. "Automatic detection and trackingof human motion with a view-based representation", ECCV, volume 1, pages 476–491.
  17. Cutler, R. and Davis, L. 2000. 'Robust real-time periodic motion detection: Analysis and applications", IEEE Patt. Anal. Mach. Intell. , volume 22, pages 781–796.
  18. Papageorgiou, C. , Oren, M. and Poggio, T. 1998. "A general framework for object detection", International Conference on Computer Vision, 1998.
  19. Isard, M. , Sullivan, J. , Blake, A. and MacCormick, J. 1999. "Object localization by bayesian correlation" ICCV, pp. 1068–1075.
  20. Comaniciu, D. , Ramesh, V. and Meer, P. 2000. "Real-time tracking of non-rigid objects using mean shift", CVPR, pp. 142–149.
  21. Isard, M. and MacCormick, J. 2001. "BraMBLE: a Bayesian multiple-blob tracker", ICCV, II, pp. 34–41.
  22. Haritaoglu, I. , Harwood D. and Davis, L. 1999. "A real time system for detecting and tracking people", IVC.
  23. Isard, M. and Blake, A. 1998. "Condensation: conditional density propagation for visual tracking", IJCV, 29(1):5–28.
  24. Toyama, K. and Blake, A. 2001. "Probabilistic tracking in a metric space", ICCV, 2:50–57.
Index Terms

Computer Science
Information Sciences

Keywords

Skeleton Fork Points End Points Descriptor Features Centre of Gravity (CG)