CFP last date
20 January 2025
Reseach Article

Multi-resolution Joint LBP Histograms for Biomedical Image Retrieval

by K. Prasanthi Jasmine, P. Rajesh Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 95 - Number 3
Year of Publication: 2014
Authors: K. Prasanthi Jasmine, P. Rajesh Kumar
10.5120/16575-6260

K. Prasanthi Jasmine, P. Rajesh Kumar . Multi-resolution Joint LBP Histograms for Biomedical Image Retrieval. International Journal of Computer Applications. 95, 3 ( June 2014), 23-27. DOI=10.5120/16575-6260

@article{ 10.5120/16575-6260,
author = { K. Prasanthi Jasmine, P. Rajesh Kumar },
title = { Multi-resolution Joint LBP Histograms for Biomedical Image Retrieval },
journal = { International Journal of Computer Applications },
issue_date = { June 2014 },
volume = { 95 },
number = { 3 },
month = { June },
year = { 2014 },
issn = { 0975-8887 },
pages = { 23-27 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume95/number3/16575-6260/ },
doi = { 10.5120/16575-6260 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:18:28.133617+05:30
%A K. Prasanthi Jasmine
%A P. Rajesh Kumar
%T Multi-resolution Joint LBP Histograms for Biomedical Image Retrieval
%J International Journal of Computer Applications
%@ 0975-8887
%V 95
%N 3
%P 23-27
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, a new image indexing and retrieval algorithm using multi-resolution local binary patterns (LBP) with joint histogram is proposed. The existing LBP extracts the relationship between the center pixel and its surrounding neighbors in an image. The proposed method encodes the joint histogram between the multi-resolution LBPs which are calculated using Gaussian filter bank with different standard deviations. The retrieval results of the proposed method have been tested on OASIS magnetic resonance imaging (MRI) database. The results after being investigated shows a significant improvement in terms of precision as compared to LBP and other LBP like features.

References
  1. A. Mueen, R. Zainuddin, and M. Sapiyan Baba, MIARS: A Medical Image Retrieval System. J. Med. Syst. , 34 859–864, 2010.
  2. Chu, W. , Hsu, C. , Cardenas, C. , and Taira, R. , Aknowledge-based image retrieval with spatial and temporal constructs. IEEE Trans. Knowl. Data Eng. 10 (6) 872–888, 1998.
  3. Shyu, C. , Kak, A. , Kosaka, A. , Aisen, A. , and Broderick, L. , ASSERT: A physician-in-the-loop content-based inage retrieval system for HRCT image databases. Comput. Vis. Image Underst. 75 111–132, 1998.
  4. Müller, H. , Lovis, C. , and Geissbuhler, A. , Medical Image retrieval—the MedGIFT project. Medical Imaging and telemedicine, 2–7, 2005.
  5. Y. Rui and T. S. Huang, Image retrieval: Current techniques, promising directions and open issues. J. Vis. Commun. Image Represent. , 10 39–62, 1999.
  6. A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. , 22 (12) 1349–1380, 2000.
  7. M. Kokare, B. N. Chatterji, P. K. Biswas, A survey on current content based image retrieval methods. IETE J. Res. , 48 (3&4) 261–271, 2002.
  8. M. S. Lew, N. Sebe, C. Djerba, and R. Jain, Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimedia Comput. , Commun. , Appl. , 2 (1) 1–19, 2006.
  9. Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, Asurvey of content-based image retrieval with high-level semantics. J. Pattern Recognition, 40 262-282, 2007.
  10. H. M¨uller, N. Michoux, D. Bandon, and A. Geisbuhler, A review of content-based image retrieval systems in medical applications–Clinical benefits and future directions. J. Med. Inf. , 73 (1) 1–23, 2004.
  11. G. Cross, A. Jain, Markov random field texture models, IEEE Trans. Pattern Anal. Mach. Intell. 5 (1) (1983) 25–39.
  12. J. Mao, A. Jain, Texture classification and segmentation using multi-resolution simultaneous autoregressive models, Pattern Recognition 25 (2) (1992) 173–188.
  13. F. Liu, R. Picard, Periodicity, directionality, and randomness: wold features for image modeling and retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 18 (7) (1996) 722–733.
  14. B. S. Manjunath, W. Y. Ma, Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18 (8) (1996) 837–842.
  15. J. Han, K. -K. Ma, Rotation-invariant and scale-invariant Gabor features for texture image retrieval, Image Vision Comput. 25 (2007) 1474–1481.
  16. T. Chang, C. C. Jay Kuo, Texture analysis and classification with tree-structured wavelet transform, IEEE Trans. Image Process. 2 (4) (1993) 429–441.
  17. A. Laine, J. Fan, Texture classification by wavelet packet signatures, IEEE Trans. Pattern Anal. Mach. Intell. 11 (15) (1993) 1186–1191.
  18. M. Subrahmanyam, A. B. Gonde and R. P. Maheshwari, Color and Texture Features for Image Indexing and Retrieval, IEEE Int. Advance Computing Conf. , Patial, India, (2009) 1411-1416.
  19. Subrahmanyam Murala, R. P. Maheshwari, R. Balasubramanian, A Correlogram Algorithm for Image Indexing and Retrieval Using Wavelet and Rotated Wavelet Filters, Int. J. Signal and Imaging Systems Engineering.
  20. T. Ojala, M. Pietikainen, D. Harwood, A comparative sudy of texture measures with classification based on feature distributions, Elsevier J. Pattern Recognition, 29 (1): 51-59, 1996.
  21. T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell. , 24 (7): 971-987, 2002.
  22. M. Pietikainen, T. Ojala, T. Scruggs, K. W. Bowyer, C. Jin, K. Hoffman, J. Marques, M. Jacsik, W. Worek, Overview of the face recognition using feature distributions, Elsevier J. Pattern Recognition, 33 (1): 43-52, 2000.
  23. T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: Applications to face recognition, IEEE Trans. Pattern Anal. Mach. Intell. , 28 (12): 2037-2041, 2006.
  24. G. Zhao, M. Pietikainen, Dynamic texture recognition using local binary patterns with an application to facial expressions, IEEE Trans. Pattern Anal. Mach. Intell. , 29 (6): 915-928, 2007.
  25. M. Heikkil;a, M. Pietikainen, A texture based method for modeling the background and detecting moving objects, IEEE Trans. Pattern Anal. Mach. Intell. , 28 (4): 657-662, 2006.
  26. X. Huang, S. Z. Li, Y. Wang, Shape localization based on statistical method using extended local binary patterns, Proc. Inter. Conf. Image and Graphics, 184-187, 2004.
  27. M. Heikkila, M. Pietikainen, C. Schmid, Description of interest regions with local binary patterns, Elsevie J. Pattern recognition, 42: 425-436, 2009.
  28. M. Li, R. C. Staunton, Optimum Gabor filter design and local binary patterns for texture segmentation, Elsevie J. Pattern recognition, 29: 664-672, 2008.
  29. B. Zhang, Y. Gao, S. Zhao, J. Liu, Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor, IEEE Trans. Image Proc. , 19 (2): 533-544, 2010.
  30. B. Zhang, L. Zhang, D. Zhang, L. Shen, Directional binary code with application to PolyU near-infrared face database, Pattern Recognition Letters 31 (2010) 2337–2344.
  31. Subrahmanyam Murala, R. P. Maheshwari, R. Balasubramanian, "Directional Binary Wavelet Patterns for Biomedical Image Indexing and Retrieval," Journal of Medical Systems, 36 (5) 2865-2879
  32. D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L. Buckner, Open access series of imaging studies (OASIS): Crosssectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. , 19 (9) 1498–1507, 2007.
Index Terms

Computer Science
Information Sciences

Keywords

Local Binary Patterns (LBP) Texture Pattern Recognition Feature Extraction Biomedical Image Retrieval.