CFP last date
20 January 2025
Reseach Article

On pgI-Closed Sets in Ideal Topological Spaces

by R. Santhi, M. Rameshkumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 94 - Number 5
Year of Publication: 2014
Authors: R. Santhi, M. Rameshkumar
10.5120/16337-5655

R. Santhi, M. Rameshkumar . On pgI-Closed Sets in Ideal Topological Spaces. International Journal of Computer Applications. 94, 5 ( May 2014), 7-11. DOI=10.5120/16337-5655

@article{ 10.5120/16337-5655,
author = { R. Santhi, M. Rameshkumar },
title = { On pgI-Closed Sets in Ideal Topological Spaces },
journal = { International Journal of Computer Applications },
issue_date = { May 2014 },
volume = { 94 },
number = { 5 },
month = { May },
year = { 2014 },
issn = { 0975-8887 },
pages = { 7-11 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume94/number5/16337-5655/ },
doi = { 10.5120/16337-5655 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:16:46.479185+05:30
%A R. Santhi
%A M. Rameshkumar
%T On pgI-Closed Sets in Ideal Topological Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 94
%N 5
%P 7-11
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we define and investigate the notions of gI-closed sets and gI-open sets in ideal topological spaces. Then, we define _ -sets and ^ -sets and discuss the relation between them. Also, we give characterizations of gI-closed sets and gs-closed sets. A separation axiom stronger than TI -space is defined and various characterizations are given.

References
  1. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
  2. M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math. , 2(1) (2010), 36-42.
  3. M. Khan and T. Noiri, On gI-closed sets in ideal topological spaces, J. Adv. Stud. in Top. , 1(2010),29-33.
  4. K. Kuratowski, Topology, Vol. I, Academic press, New York, 1966.
  5. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
  6. N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
  7. M. Mrsevic, On pairwise R0 and pairwise R1 bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-148.
  8. M. Rajamani, V. Inthumathi and S. Krishnaprakash I g- closed sets and I g-continuity, J. Adv. Res. Pure. Math. ,2(4) (2010), 63-72.
  9. M. H. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc. , 41(1937), 374- 481.
  10. R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.
  11. V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR. , 178 (1968), 778-779.
Index Terms

Computer Science
Information Sciences

Keywords

gI-closed gI-open _ -set ^ -set TI -space