CFP last date
20 January 2025
Reseach Article

Falcon-AO++: An Improved Ontology Alignment System

by Fatsuma Jauro, S. B. Junaidu, S. E. Abdullahi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 94 - Number 2
Year of Publication: 2014
Authors: Fatsuma Jauro, S. B. Junaidu, S. E. Abdullahi
10.5120/16312-5541

Fatsuma Jauro, S. B. Junaidu, S. E. Abdullahi . Falcon-AO++: An Improved Ontology Alignment System. International Journal of Computer Applications. 94, 2 ( May 2014), 1-7. DOI=10.5120/16312-5541

@article{ 10.5120/16312-5541,
author = { Fatsuma Jauro, S. B. Junaidu, S. E. Abdullahi },
title = { Falcon-AO++: An Improved Ontology Alignment System },
journal = { International Journal of Computer Applications },
issue_date = { May 2014 },
volume = { 94 },
number = { 2 },
month = { May },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume94/number2/16312-5541/ },
doi = { 10.5120/16312-5541 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:16:29.635706+05:30
%A Fatsuma Jauro
%A S. B. Junaidu
%A S. E. Abdullahi
%T Falcon-AO++: An Improved Ontology Alignment System
%J International Journal of Computer Applications
%@ 0975-8887
%V 94
%N 2
%P 1-7
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

With the semantic web, data becomes machine-readable and ontologies define the data. Ontologies in any domain are heterogeneous due to rapid increase in ontology development and differences in views of developers. Agents can fully understand the data only if the correspondences between ontologies are known. Various ontology alignment systems have been developed to automatically discover such correspondences. However, human involvement is still indispensible because the results provided by fully automatic systems are not always complete or precise. This paper introduces Falcon-AO++, an extension of the Falcon-AO alignment system that supports the interactive contribution of a domain expert in the matching process. The evaluation results have shown that contribution of an expert and matching ability of matchers can improve alignment results.

References
  1. Shvaiko, P. , & Euzenat, J. (2013). Ontology Matching: State art and Future Challenges. IEEE , pp. 1-15.
  2. Jean-Mary, Y. , Shironoshita, E. , and Kabuka, M. (2009). Ontology Matching with Semantic Verification. Journal of Web Semantics. 7(3), 235–251
  3. Shen, G. , Jin, L. , Zhao, Z. , Jia, Z. , He, W. , and Huang, Z. (2011). OMReasoner: Using Reasoner for Ontology Matching : results for OAEI 2011.
  4. Saruladha, K. , Aghila, G. , and Sathiya, B. (2011). A Comparative Analysis of Ontology and Schema Matching Systems. International Journal of Computer Application. 34(8), 14-21.
  5. Gracia, J. , and Mena, E. (2008). Ontology matching with CIDER: Evaluation report for the OAEI 2008. In Proc. of 3rd Ontology Matching Workshop (OM'08), at 7th International Semantic Web Conference (ISWC'08), Karlsruhe, Germany.
  6. Jian, N. , Hu, W. , Cheng, G. , and Qu, Y. (2005). Falcon-AO: aligning ontologies with Falcon. In Proceedings of K-CAP Workshop on Integrating Ontologies. pp. 85–91.
  7. Granitzer, M. , Sabol, V. , Weng, K. O. , Lukose, D. , and Tochtermann, K. (2010). Ontology Alignment—A Survey with Focus on Visually Supported Semi-Automatic Techniques. Future Internet , 2(3), 238-258
  8. Paulheim, H. , Hertling, S. , and and Ritze, D. (2013). Towards Evaluating Interactive Ontology Matching Tools. The semantic web: semantics and big data, Lecture Notes in Computer Science LNSC. pp. 31-45.
  9. Sarasua, C. , Simperl, E. , and Noy, N. F. (2012). CROWDMAP: Crowdsourcing Ontology Alignment with Microtasks. International Semantic Web Conference ISWC. pp. 525-541. Springer.
  10. Zhang, S. , and Bodenreider, O. (2007). Lessons Learned from Cross-Validating Alignments between Large Anatomical Ontologies. In Proceedings of 12th World Congress on Medical Informatics. Brisbane, Australia.
  11. Vargas-vera, M. , and Nagy, M. (2010). Towards Intelligent Ontology Alignment Systems for Question Answering: Challenges and Roadblocks. Journal of Emerging technologies in web intelligence , 2(3), 244-257
  12. Amrouch, S. , and Mostefai, S. (2012). Ontology Interoperability Techniques, The State of the Art. Journal of Information Organization , 2(1), 20-27.
  13. Choi, N. , Song, I. , and Han, H. (2006). A Survey on Ontology Mapping. SIGMOD Record, 35 (3), 34-41.
  14. Hu, W. , and Qu, Y. (2008). Falcon-AO: A practical ontology matching system. Web Semantics: Science, Services and Agents on theWorldWideWeb, 6(3), 237-239.
  15. Hu, W. , Qu, Y. , and Cheng, G. (2008). Matching large ontologies: A divide-and-conquer approach. Data and Knowledge Engineering , 67(1), 140-160.
  16. Qu, Y. , Hu, W. , and Cheng, G. (2006). Constructing virtual documents for ontology matching. In Proceedings of the 15th International World Wide Web Conference. pp. 23–31.
  17. Hu, W. , Jian, N. , Qu, Y. , and Wang, Y. (2005). GMO: A Graph Matching for Ontologies. In Proceedings of K-CAP Workshop on Integrating Ontologies, pp. 41–48.
Index Terms

Computer Science
Information Sciences

Keywords

Ontology matching user input