CFP last date
20 December 2024
Reseach Article

Glaucoma Detection in Retinal Image using Medial Axis Detection and Level Set Method

by G. Jayanthi, G. Mary Amirtha Sagayee, S. Arumugam
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 93 - Number 3
Year of Publication: 2014
Authors: G. Jayanthi, G. Mary Amirtha Sagayee, S. Arumugam
10.5120/16199-5470

G. Jayanthi, G. Mary Amirtha Sagayee, S. Arumugam . Glaucoma Detection in Retinal Image using Medial Axis Detection and Level Set Method. International Journal of Computer Applications. 93, 3 ( May 2014), 42-48. DOI=10.5120/16199-5470

@article{ 10.5120/16199-5470,
author = { G. Jayanthi, G. Mary Amirtha Sagayee, S. Arumugam },
title = { Glaucoma Detection in Retinal Image using Medial Axis Detection and Level Set Method },
journal = { International Journal of Computer Applications },
issue_date = { May 2014 },
volume = { 93 },
number = { 3 },
month = { May },
year = { 2014 },
issn = { 0975-8887 },
pages = { 42-48 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume93/number3/16199-5470/ },
doi = { 10.5120/16199-5470 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:14:54.500343+05:30
%A G. Jayanthi
%A G. Mary Amirtha Sagayee
%A S. Arumugam
%T Glaucoma Detection in Retinal Image using Medial Axis Detection and Level Set Method
%J International Journal of Computer Applications
%@ 0975-8887
%V 93
%N 3
%P 42-48
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Glaucoma is an eye disorder that characterized by elevated Intraocular pressure (IOP). The optic nerve head was damaged by the increased intraocular pressure. It will lead to vision loss, if it is unnoticed. By the extraction of optic disc and optic cup and also calculating the cup to disc ratio, the glaucoma will be detected. In our project we automatically extracted the optic disc in retinal image by using LDA and Medial axis detection. The optic cup extracted by using threshold based initialization level set method and ellipse fitting algorithm. These methods have been tested on drive databases. The average value obtained for (optic disc is a precision value and Recall value are 0. 9 and 0. 966 respectively, the F-score of 0. 9323 and for optic cup a precision value and Recall value are 0. 9 and 0. 946 respectively, the F-score of 0. 9218) describes that this method is a robust tool for detection of optic disc and optic cup. .

References
  1. Sandra Morales*, Valery Naranjo, Jesús Angulo, and Mariano Alcañiz, Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology, IEEE Trans. Med. Imaging VOL. 32, NO. 4, APRIL 2013.
  2. Adam Hoover, "Locating the Optic Nerve in a Retinal Image Using the Fuzzy Convergence of the Blood Vessels", Michael Goldbaum.
  3. Arturo Aquino, "Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques", Manuel Emilio Gegúndez-Arias, and Diego Marín
  4. T. R. G. Babu and S. Shenbagadevi. Automatic detection of glaucoma using fundus image. European Journal of Scientific Research, 59:22–32, 2011
  5. R. Bock, J. Meier, L. G. Nyl, and G. Michelson, "Glaucoma risk index: automated glaucoma detection from color fundus images," Medical Image Analysis, vol. 14(3), pp. 471–481, 2010.
  6. Diego Marín, "A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features", Arturo Aquino*, Manuel Emilio Gegúndez-Arias, and José Manuel Bravo
  7. Y. Fengshou. Extraction of features from fundus images for glaucoma assessment. Master's thesis, National University of Singapore, 2011.
  8. Gopal Datt Joshi, Member, IEEE, Jayanthi Sivaswamy, Member, IEEE, and S. R. Krishnadas, Optic Disk and Cup Segmentation from Monocular Colour Retinal Images for Glaucoma Assessment.
  9. J. Hajer, H. Kamel, and E. Noureddine, "Localization of the optic disk in retinal image using the water snake," in Proc. Int. Conf. Comput. And Commun. Eng. , 2008, pp. 947–951.
  10. Y. Hatanaka, A. Noudo, C. Muramatsu, A. Sawada, T. Hara, T. Yamamoto, and H. Fujita, "Automatic measurement of vertical cup-to-disc ratio on retinal fundus images," Proc. ICMB, pp. 64–72, 2010.
  11. G. D. Joshi, J. Sivaswamy, K. Karan, P. R. , and R. Krishnadas, "Vessel bend-based cup segmentation in retinal images," Proc. Int. Conf. Pattern Recognition (ICPR), pp. 2536–2539, 2010.
  12. Juan Xua, "Optic disk feature extraction via modified deformable model technique for glaucoma analysis", Opas Chutatapeb, Eric Sungc, Ce Zhengd, Paul Chew Tec Kuand.
  13. Keith A. Goatman," Detection of New Vessels on the Optic Disc Using Retinal Photographs", Alan D. Fleming, Sam Philip, Graeme J. Williams, John A. Olson, and Peter F. Sharp.
  14. S. Lu, "Accurate and efficient optic disc detection and segmentation by a circular transformation," IEEE Trans. Med. Imag. , vol. 30, no. 12, pp. 2126–2133, Dec. 2011.
  15. J. Liu, D. Wong, J. Lim, H. Li, N. Tan, and T. Wong, "Argali- an automatic cup-to-disc ratio measurement system for glaucoma detection and analysis framework," Proc. SPIE, Medical Imaging, pp. 72 603K–8, 2009.
  16. Marc Lalonde, "Fast and Robust Optic Disc Detection Using Pyramidal Decomposition and Hausdorff-Based Template Matching", Mario Beaulieu, and Langis Gagnon*
  17. D. Pascolini and S. P. Mariotti, "Global estimates of visual impairment: 2010," Br. J. Ophthalmol. , pp. 614–621, 2011.
  18. R. J. Qureshi, L. Kovacs, B. Harangi, B. Nagy, T. Peto, and A. Hajdu, "Combining algorithms for automatic detection of optic disc and macula in fundus images," Comput. Vis. Image Understand. , vol. 116, no. 1, pp. 138–145, 2012.
  19. S. Sekhar, "Automated Localisation of Retinal Optic Disk Using Hough Transform", W. Al-Nuaimy and A. K. Nandi
  20. K. Stapor, A. Sacutewitonski, R. Chrastek, and G. Michelson, "Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis," Proc. ICCS, pp. 41–48, 2004.
  21. Siddalingaswamy P. C. Automatic Localization and Boundary Detection of Optic Disc Using Implicit Active Contours, 2010 International Journal of Computer Applications (0975 – 8887) Volume 1 – No. 7
  22. Toru Tamaki, Bingzhi Yuan, Kengo Harada, Bisser Raytchev, Kazufumi Kaneda Hiroshima University, Japan Linear Discriminative Image Processing Operator Analysis.
  23. D. Welfer, J. Scharcanski, C. M. Kitamura, M. M. D. Pizzol, L. W. Ludwig, and D. R. Marinho, "Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach,"Comput. Biol. Med. , vol. 40, no. 2, pp. 124–137, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

Optic disc LDA Cup boundary detection Vessel bend Level set method cup-to-disc ratio