CFP last date
20 January 2025
Reseach Article

Hyers-Ulam-Rassias of Orthogonal Pexiderized Quadratic Functional Equation

by Iz. El-fassi, S. Kabbaj
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 92 - Number 9
Year of Publication: 2014
Authors: Iz. El-fassi, S. Kabbaj
10.5120/16038-4895

Iz. El-fassi, S. Kabbaj . Hyers-Ulam-Rassias of Orthogonal Pexiderized Quadratic Functional Equation. International Journal of Computer Applications. 92, 9 ( April 2014), 20-24. DOI=10.5120/16038-4895

@article{ 10.5120/16038-4895,
author = { Iz. El-fassi, S. Kabbaj },
title = { Hyers-Ulam-Rassias of Orthogonal Pexiderized Quadratic Functional Equation },
journal = { International Journal of Computer Applications },
issue_date = { April 2014 },
volume = { 92 },
number = { 9 },
month = { April },
year = { 2014 },
issn = { 0975-8887 },
pages = { 20-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume92/number9/16038-4895/ },
doi = { 10.5120/16038-4895 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:13:51.633040+05:30
%A Iz. El-fassi
%A S. Kabbaj
%T Hyers-Ulam-Rassias of Orthogonal Pexiderized Quadratic Functional Equation
%J International Journal of Computer Applications
%@ 0975-8887
%V 92
%N 9
%P 20-24
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The Hyers-Ulam-Rassias stability of the conditional quadratic functional equation of Pexider type is established where is a symmetric orthogonality in the sense of Rätz.

References
  1. J. Aczél, A short course on functional equations, D. Reidel Publ. Co. ,Dordrecht, 1987.
  2. J. Aczél and J. Dhombres, Functional Equations in Several Vaiables, Cambridge Univ. Press, 1989.
  3. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
  4. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
  5. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scienti?c, River Edge, NJ, 2002.
  6. S. Czerwik (ed. ), Stability of Functional Equations of Ulam –Hyers–Rassias Type, Hadronic Press, 2003.
  7. F. Drljevic, On a functional which is quadratic on A- orthogonal vectors. Publ. Inst. Math. (Beograd)(N. S. ) 54(1986), 63-71.
  8. IZ. EL-Fassi, N. Bounader, A. Chahbi and S. Kabbaj, "On the stability of sigma quadratic functional equation" Jyoti Academic Press, Vol. 2, Issue 2, 2013, Page 61-76, ISSN 2319-6939
  9. M. Fochi, Functional equations in A-orthogonal vectors, Aequationes Math. 38 (1989), 28-40.
  10. R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull Polish Acad. Sci. Math. 43 (1995), No. 2, 143-151.
  11. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222224.
  12. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998. the Absence of the Mountain
  13. K. W. Jun and Y. H. Lee, On the Hyers–Ulam–Rassias stability of a pexiderized quadratic inequality, Math. Ineq. Appl. , 4(1) (2001), 93118.
  14. S. -M. Jung and P. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38 (2001), No. 3, 645-656.
  15. M. S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, arXiv math. FA/0412474.
  16. M. S. Moslehian, On the Orthogonal Stability of the Pexiderized quadratic equation, arXiv: math/0412475v2 [math. FA] 12 Feb 2005.
  17. Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai Math. 43 (1998), no. 3, 89-124.
  18. Th. M. Rassias, On the Stability of the Linear mapping in Banach spaces, Procc. Of the Amer. Math. Soc. , (72)(2)(1978), 297-300.
  19. Th. M. Rassias, On the Stability of the functional equations in Banach spaces, J. Math. Anal. Appl. , (251)(2000), 264-284
  20. J. Ratz, On orthogonally additive mappings, Aequations Math. 28 (1985),35-49.
  21. J. Sikorska "Generalized orthogonal stability of some functional equations" Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2006, Article ID 12404, Pages 1–23 DOI 10. 1155/JIA/2006/12404
  22. F. Skof Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
  23. Gy. Szabo, Sesquilinear-orthogonally quadratic mappings, Aequationes Math. 40 (1990), 190-200.
  24. S. M. Ulam, A collection of the Mathematical Problem, Interscience Publ. New York, 1960.
  25. F. Vajzovic, Uber das Funktional H mit der Eigenschaft: (x, y) = 0 ? H(x+y)+H(x?y) = 2H(x)+2H(y), Glasnik Mat. Ser. III 2 (22) (1967), 73-81.
Index Terms

Computer Science
Information Sciences

Keywords

Hyers-Ulam-Rassias stability Orthogonal spaces Pexiderized Quadratic functional equations.