CFP last date
20 January 2025
Reseach Article

A New Approach for Alzheimer’s Disease Diagnosis by using Association Rule over PET Images

by A. Veeramuthu, S. Meenakshi, P. S. Manjusha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 91 - Number 9
Year of Publication: 2014
Authors: A. Veeramuthu, S. Meenakshi, P. S. Manjusha
10.5120/15908-5009

A. Veeramuthu, S. Meenakshi, P. S. Manjusha . A New Approach for Alzheimer’s Disease Diagnosis by using Association Rule over PET Images. International Journal of Computer Applications. 91, 9 ( April 2014), 9-14. DOI=10.5120/15908-5009

@article{ 10.5120/15908-5009,
author = { A. Veeramuthu, S. Meenakshi, P. S. Manjusha },
title = { A New Approach for Alzheimer’s Disease Diagnosis by using Association Rule over PET Images },
journal = { International Journal of Computer Applications },
issue_date = { April 2014 },
volume = { 91 },
number = { 9 },
month = { April },
year = { 2014 },
issn = { 0975-8887 },
pages = { 9-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume91/number9/15908-5009/ },
doi = { 10.5120/15908-5009 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:12:18.353870+05:30
%A A. Veeramuthu
%A S. Meenakshi
%A P. S. Manjusha
%T A New Approach for Alzheimer’s Disease Diagnosis by using Association Rule over PET Images
%J International Journal of Computer Applications
%@ 0975-8887
%V 91
%N 9
%P 9-14
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Alzheimer's disease is usually diagnosed from patient history and clinical information. Finding appropriate technologies and early detection of AD is of fundamental importance for early treatments. A set of PET images is selected for the study. In order to ensure that a given voxels in different images are refer to the same position the images are normalized using Spatial Normalization which are subjected to noise filter using Butter worth Filter. Intensity Normalization is required to perform direct image comparisons in which the intensity is normalized to an Imax value. Based on Activation Estimation the Region of Interest (ROI) is achieved which are subjected to Association Rule Mining by specifying the minimum support and the confidence values. Finally Computer Aided Diagnosis (CAD) method performs the image classification with verified rules based on threshold. The comparison of previous methods is performed the early finding of AD.

References
  1. R. Chaves , J. Ramirez, J. M. Gorriz, I. A. Illan 'Functional brain image classification using association rules defined over discriminant regions' Dept of Signal theory, Networking and Communication, 2012.
  2. Alvarez, I. , M. Gorriz, J. , Lopez, M. M. , Ramirez, J. , Salas-Gonzalez, D. , Segovia, F. ,Chaves, R. , Puntonet, C. G. , 2011. Computer aided diagnosis of Alzheimer's disease using component based SVM. Appl. Soft Comput. 11 (2), pp. 2376–2382. 2011.
  3. Chaves, R. , Gorriz, J. M. , Ramirez, J. , Illan, I. A. , Salas-Gonzalez, D. , Gomez-R, M, Efficient mining of association rules for the early diagnosis of Alzheimer's disease. Phys. Med. Biol. 56 (18), pp. 6047–6063, 2011.
  4. Alvarez, I. , Gorriz, J. M. , Ramirez, J. , Salas-Gonzalez, D. , Lopez, M. , Segovia, F. , Chaves,R. , Gomez-Rio, M. , Puntonet, C. G. , 18 F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis. Inform. Sci. 181 (4), pp. 903–916, 2010.
  5. Padilla P, Gorriz JM, Ramírez J, Lang EW, Chaves R, Segovia F, López M, Salas-González D, Alvarez. I. , Analysis of SPECT Brain Images for the Diagnosis of Alzheimer's Disease Based on NMF for Feature Extraction, Dept of Signal theory, Networking and Communication,2010.
  6. Alvarez, I. , Gorriz, J. M. , Ramirez, J. , Salas-Gonzalez, D. , Lopez, M. , Puntonet, C. G. ,Segovia, F. , Alzheimer's diagnosis using eigenbrains and support vectormachines. Electron. Lett. 45 (7), pp. 342–343, 2009.
  7. Friston, K. J. , Ashburner, J. , Kiebel, S. J. , Nicholas. T. E, Penny. W. D. . , Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, 2007.
  8. Fung, G. , Stoeckel, J. , SVM feature selection for classification of SPECT images of Alzheimer's disease using spatial normalization Knowl. Inform. Syst. 11 (2), pp. 243–258. , 2007.
  9. Nestor, P. J. , Scheltens, P. , Hodges, J. R. , Advances in the early detection of Alzheimer's disease. Nat. Rev. Neurosci. 4, pp. S34–S35, 2004.
  10. Agrawal, R. , Srikant, R. , Fast Algorithms for mining Association rules. In: Int. Conf VLDB Santiago de Chile , Chile, pp. 487–499,1994.
  11. H. Mannila, H. Toivonen, and A. I. verkemo. Efficient algorithms for discovering association rules. In KDD-94: AAAI Workshop on Knoweledege discovery in databases, 1994.
  12. J. R. Quinlan. C4. 5: Programs for Machine learning. Morgan Kaufman 1993.
Index Terms

Computer Science
Information Sciences

Keywords

Positron Emission Tomography Spatial Normalization Intensity Normalization Region of Interest Association Rule Mining CAD.