CFP last date
20 January 2025
Call for Paper
February Edition
IJCA solicits high quality original research papers for the upcoming February edition of the journal. The last date of research paper submission is 20 January 2025

Submit your paper
Know more
Reseach Article

Quartic Spline Interpolation

by Y.p. Dubey, K.k. Paroha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 91 - Number 1
Year of Publication: 2014
Authors: Y.p. Dubey, K.k. Paroha
10.5120/15843-4724

Y.p. Dubey, K.k. Paroha . Quartic Spline Interpolation. International Journal of Computer Applications. 91, 1 ( April 2014), 5-8. DOI=10.5120/15843-4724

@article{ 10.5120/15843-4724,
author = { Y.p. Dubey, K.k. Paroha },
title = { Quartic Spline Interpolation },
journal = { International Journal of Computer Applications },
issue_date = { April 2014 },
volume = { 91 },
number = { 1 },
month = { April },
year = { 2014 },
issn = { 0975-8887 },
pages = { 5-8 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume91/number1/15843-4724/ },
doi = { 10.5120/15843-4724 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:11:37.243967+05:30
%A Y.p. Dubey
%A K.k. Paroha
%T Quartic Spline Interpolation
%J International Journal of Computer Applications
%@ 0975-8887
%V 91
%N 1
%P 5-8
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper, we have investigate existence, uniqueness and error bounds of deficient C1 Quartic Spline Interpolation.

References
  1. A. Meri and A. Sharma, Convergence of interpolatory splines ibid, 1-243-250, 1968.
  2. Carl Debour; A Practical Guide to Springer's Applied Mathematical Sciences, Vol. 27, Springer - Verlag, New York, 1979.
  3. C. A. Hall and W. W. Meyer; Optimal error bounds for cubic spline interpolation J. Approx. Theory 16(1976), 105-22.
  4. Dubean and J. Savier; explicit Error Bounds for spline interpolation on a uniform partition J. Approx. Theory 82 (1995), 1-14.
  5. G. Howell and A. K. Verma, Best error bounds for quartic spline interpolation, J. Approx. "Theory, 58 (1989), 59-67.
  6. K. A. Kopotum, Univariate Spline equivalence of moduli of smoothness and application, Mathematics of Computation, 76 (2007), 930-946.
  7. K. Marken and M. Raimer's. An unconditionally convergents method for compacting zero's of splines and polynomials Mathematics of Computation 76 (2007), 845-866.
  8. P. J. Davis, Interpolation and approximation, New York, 1961.
  9. R. H. J. Gemling - Meyling. In Interpolation by Bivariate Quintic Splines of Class construction and theory of function, 87 (Ed) Sendor et. al. (1987), pp. 152-161.
  10. 10. S. S. Rana and Y. P. Dubey. Best Error Bounds of deficient Quartic Spline Interpolation, Indian J. Pure Appl. Maths. 30 (1999) 385-393.
Index Terms

Computer Science
Information Sciences

Keywords

Deficient Quartic Spline Interpolation Error Bounds.