CFP last date
20 January 2025
Reseach Article

CBIR with Various Feature Extraction Techniques using LIRS and LSRR Performance Parameter

by H. B. Kekre, Aditi Mehta, Paulami Shah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 90 - Number 6
Year of Publication: 2014
Authors: H. B. Kekre, Aditi Mehta, Paulami Shah
10.5120/15577-4258

H. B. Kekre, Aditi Mehta, Paulami Shah . CBIR with Various Feature Extraction Techniques using LIRS and LSRR Performance Parameter. International Journal of Computer Applications. 90, 6 ( March 2014), 10-15. DOI=10.5120/15577-4258

@article{ 10.5120/15577-4258,
author = { H. B. Kekre, Aditi Mehta, Paulami Shah },
title = { CBIR with Various Feature Extraction Techniques using LIRS and LSRR Performance Parameter },
journal = { International Journal of Computer Applications },
issue_date = { March 2014 },
volume = { 90 },
number = { 6 },
month = { March },
year = { 2014 },
issn = { 0975-8887 },
pages = { 10-15 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume90/number6/15577-4258/ },
doi = { 10.5120/15577-4258 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:10:20.214291+05:30
%A H. B. Kekre
%A Aditi Mehta
%A Paulami Shah
%T CBIR with Various Feature Extraction Techniques using LIRS and LSRR Performance Parameter
%J International Journal of Computer Applications
%@ 0975-8887
%V 90
%N 6
%P 10-15
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In fields such as medical, art galleries, museums, archaeology, medical imaging, trademark databases, criminal investigations, images especially the digital images grow in quantities of thousands and sometimes even lakhs every year. Content based image retrieval is required from such large databases. This paper compares various CBIR techniques based on the performance evaluation parameters namely, precision, recall, LIRS and LSRR. Euclidean Distance is used for the purpose of similarity measure.

References
  1. H. B. Kekre, Sudeep D. Thepade, "Boosting Block Truncation CodingusingKekre's LUV Color Space for Image Retrieval", WASETInternational Journal of Electrical, Computer and System Engineering (IJECSE), Volume 2, Number 3, pp. 172-180, Summer 2008.
  2. H. B. Kekre, Sudeep D. Thepade, "Image Retrieval using AugmentedBlock Truncation Coding Techniques", ACM International Conferenceon Advances in Computing, Communication and Control (ICAC3-2009), pp. 384-390, 23-24 Jan 2009, Fr. ConceicaoRodrigousCollegeofEngg. , Mumbai. Is uploaded on online ACM portal.
  3. H. B. Kekre, Sudeep D. Thepade, "Scaling Invariant Fusion of ImagePieces in Panorama Making and Novel Image Blending Technique",International Journal on Imaging (IJI), www. ceser. res. in/iji. html,Volume 1, No. A08, pp. 31-46, Autumn 2008.
  4. Hirata K. and Kato T. "Query by visual example – content-based image retrieval", In Proc. of Third International Conference on H Extending Database Technology, EDBT'92, 1992, pp 56-71
  5. H. B. Kekre, Sudeep D. Thepade, "Rendering Futuristic Image RetrievalSystem", National Conference on Enhancements in Computer,Communication and Information Technology, EC2IT-2009, 20-21 Mar2009, K. J. Somaiya College of Engineering, Vidyavihar, Mumbai-77
  6. Minh N. Do, Martin Vetterli, "Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance", IEEE Transactions On Image Processing, Volume 11, Number 2, pp. 146-158, February 2002.
  7. B. G. Prasad, K. K. Biswas, and S. K. Gupta, "Region –based image retrieval using integrated color, shape, and location index", International Journal on Computer Vision and Image Understanding Special Issue: Colour for Image Indexing and Retrieval, Volume 94, Issues 1-3, April- June 2004, pp. 193-233.
  8. Dr. H. B. Kekre, Dr. Dhirendra Mishra, " DCT Sectorization for Feature Vector Generation in CBIR",International Journal of Computer Applications (IJCA) Vol. 9(1) November 2010, ISSN 0975–8887 available online at http://www. ijcaonline. org/volume9/number1/pxc3871820. pdf
  9. Dr. H. B. Kekre, Dr. Dhirendra Mishra, "DCT-DST Plane sectorization of Row-wise Transformed color Images in CBIR",International Journal of Engineering Science and Technology (IJEST) Vol. 2(12) 2010, ISSN 7234-7244available online at http://nmims. edu/wp-content/uploads/2012/p3/MPSTME/Direndra,DCT-DSTPlanesectorization. pdf
  10. Dr. H. B. Kekre, Dhirendra Mishra, " Density distribution in WalshTransform sectors as feature vectors for image retrieval", published in international journal of compute applications (IJCA) Vol. 4(6) 2010, 30-36 ISSN 0975-8887 available online at http://www. ijcaonline. org/archives/volume4/number6/829-1072
  11. Dr. H. B. Kekre, SudeepDThepade, AkshayMaloo, "Query by Image Content Using Colour Averaging Techniques", International Journal of Engineering Science and Technology (IJEST), Volume 2, Issue 6, 2010. pp. 1612-1622 (ISSN: 0975-5462) Available online at http://www. ijest. info
  12. Dr. H. B. Kekre, SudeepDThepade, AkshayMaloo, "Image Retrieval using Fractional Coefficients of Transformed Image using DCT and Walsh Transform", International Journal of Engineering Science and Technology (IJEST), Volume 2, Issue 4, 2010. pp. 362-371 (ISSN: 0975-5462) Available online at http://www. ijest. info
  13. Dr. H. B. Kekre, SudeepDThepade, AkshayMaloo, "Performance Comparison of Image Retrieval using Row Mean of Transformed Column Image", International Journal of Engineering Science and Technology (IJEST), Volume 2, Issue 5, 2010. pp. 1908-1912 (ISSN: 0975-3397) Available online at http://www. ijest. info
  14. Aditi Mehta, Paulami Shah "Review and Comparison of Various Feature Extraction Techniques in CBIR", international journal of compute applications (IJCA), Volume 71(23), ISSN 0975-8887
Index Terms

Computer Science
Information Sciences

Keywords

Content Based Image Retrieval(CBIR) Discrete Cosine Transform (DCT) Discrete Sine Transform (DST) Walsh Transform Row Mean(RM) Column Mean(CM) Row Column Mean (RCM) Forward Diagonal Mean (FDM) Backward Diagonal Mean (BDM) Forward Backward Diagonal Mean (FBDM) Euclidean distance Precision Recall Length of Initial Relevant String of images(LIRS).