CFP last date
20 January 2025
Reseach Article

Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review

by Anchal Sharma, Charu Madhu, Jatinder Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 89 - Number 15
Year of Publication: 2014
Authors: Anchal Sharma, Charu Madhu, Jatinder Singh
10.5120/15710-4603

Anchal Sharma, Charu Madhu, Jatinder Singh . Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review. International Journal of Computer Applications. 89, 15 ( March 2014), 36-40. DOI=10.5120/15710-4603

@article{ 10.5120/15710-4603,
author = { Anchal Sharma, Charu Madhu, Jatinder Singh },
title = { Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review },
journal = { International Journal of Computer Applications },
issue_date = { March 2014 },
volume = { 89 },
number = { 15 },
month = { March },
year = { 2014 },
issn = { 0975-8887 },
pages = { 36-40 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume89/number15/15710-4603/ },
doi = { 10.5120/15710-4603 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:09:21.871099+05:30
%A Anchal Sharma
%A Charu Madhu
%A Jatinder Singh
%T Performance Evaluation of Thin Film Transistors: History, Technology Development and Comparison: A Review
%J International Journal of Computer Applications
%@ 0975-8887
%V 89
%N 15
%P 36-40
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In the past several years, the thin film transistor technology has progressed intensely, especially in the low temperature, large-area, high throughput fabrication process. Recently, various thin film transistors (TFT) technological sources have been realized, indicating that new information appliances that match new information infrastructures and lifestyles will be available in the future. In this paper, we review different types of TFTs, including amorphous silicon, polysilicon, organic and oxide TFTs. We report here on different techniques e. g. fabrication and simulation based which has been developed to accurately simulate TFT characteristics and to improve the understanding of the device operation. Here, we highlight the problem gap in the TFT technology that includes downscaling of TFTs and stability of p-type zinc oxide (ZnO) TFTs and ways to improve it.

References
  1. Saji, k. , J. , 2011. Experimental Techniques, Characterization Tools and Thin Film Transistors. pp. 105-126.
  2. Lars, H. , 2011. Electrolyte-Gated Organic Thin Film Transistors. Linköping Studies in Science and Technology. Dissertations, pp. 1389.
  3. Stannowski, B. , October 1971. Silicon-based thin-film transistors with a high stability. Dissertation, pp. 61-63
  4. Chi-Wen Chen, Ting-Chang Chang, Po-Tsun Liu, Hau-Yan Lu, Kao-Cheng Wang, Chen- Shuo Huang et al. , Oct 2005. High-Performance Hydrogenated Amorphous-Si TFT for AMLCD and AMOLED Applications. IEEE electron device letters, vol. 26, pp. 10.
  5. Brotherton, S. , D. , February 1995. Polycrystalline silicon thin film transistors. Semiconductor Science Technology, vol. 10, pp . 721-738.
  6. Adams A C, VLSI Technology, ed. , S M Sze, 1983, New York McGraw Hill, pp. 93.
  7. Nakazawa K, 1991, J. App. Phys. , vol. 69, pp. 1703.
  8. Meakin D B, Coxon P A, Migliorato P, Stoemenos J, and Economou N A, 1987, Applied Physics Letters, vol. 50 , pp. 1894.
  9. Matsumura H, Hosoda Y and furukawa S, 1993, Mater, Res. Soc. Symp. Proc. , vol. 283, pp. 623.
  10. I. Pappas, D. Tassis, s. Siskos, and C. A. Dimitriadis, Jun 2010. Characteristics of Double-Gate Polycrystalline Silicon Thin-Film Transistors for AMOLED Pixel Design. IEEE, vol. 978, pp. 4244 -8157.
  11. Kuo, Y. , 2013. Thin Film Transistor Technology - Past, Present, and Future. The Electrochemical Society Interface, spring.
  12. Powell, M. , J. , Berkel, C. , Franklin, A. , R. , Deane, S. , C. , and Milne, W. , I. , February 1992. Defect pool in amorphous-silicon thin-film transistors. Phys. Rev. B, Condens. Matter, vol. 45, pp. 4160–4170.
  13. A. Lodha, and R. Singh, 2001, IEEE Transaction Semiconductor Manufact. , vol. 14, pp. 281.
  14. Song C. , K. , and Y. X. Xu, 2003, J. Korean Physics Society, vol. 42, pp. 425.
  15. S. H. Jin, J. S. Yu, Lee, C. , A. , Kim, J. , W. , B. G. Park, and J. D. Lee, 2004, J. Korean Physics Society, vol. 44, pp. 181.
  16. Kelley, T. , W. , Muyres, D. , V. , Baude, P. , F. , Smith, T. , P. , and Jones, T. , D. , 2003, Materials Research Society Symposium Proceeding, San Francisco, pp. 226.
  17. White, H. , S. , Kittlesen, G. , P. , and Wrighton, M. , S. , 1984, J. Am. Chem. Society, vol. 106, pp. 5375.
  18. Tsumura, A. , Koezuka, H. , and Ando, T. , 1986, Applied Physics Letter, vol. 49, pp. 1210.
  19. Bao, Z. , Rogers, J. A. , Katz, H. E. , 1999, J. Mater. Chem. , vol. 9, pp. 1895.
  20. Rogers, J. A. , Bao, Z. , Katz, H. E. , Dodabalapur, 2003, A. - Thin-Film Transistors, volume-377.
  21. Kelley, T. W. , et al. , 2003, Mater. Res. Soc. Symp. Proc. , vol. 771, pp. 169.
  22. Sundar, V. , C. , Zaumseil, J. , Podzorov, V. , Menard, E. , Willett, R. , L. , Someya, T. , et al. , 2004, www. sciencemag. org, vol. 303, pp. 1644.
  23. Dimitrakopoulos, C. D. , and Malenfant, P. R. L. , 2002, Adv. Mater. , vol. 14, pp. 99.
  24. Kagan, C. R. , 2003, Thin Film Transistors, Marcel Dekker Inc. , New York.
  25. Roichman, Y. , and Tessler, N. , 2002, Appl. Phys. Lett. , vol. 80, pp. 151.
  26. Necliudov, P. , V. , Shur, M. , S. , Gundlach, D. , J. , and Jackson, T. , N. , Dec. 2000. Modeling of organic thin film transistors of different designs. J. Appl. Phys. , vol. 88, pp. 6594–6597.
  27. Roichman, Y. , and Tessler, N. , Jan. 2002. Structures of polymer field-effect transistor: Experimental and numerical analyses. Appl. Phys. Lett. , vol. 80, pp. 151–153.
  28. Hill, I. , G. , Oct. 2005. Numerical simulations of contact resistance in organic thin-film transistors. Appl. Phys. Lett. , vol. 87, pp. 163 -505.
  29. Gundlach, D. , J. , Zhou, L. , Nichols, J. , A. , Jackson, T. , N. , Necliudov, P. , V. , and Shur, M. , S. , Jul. 2006. An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. , vol. 100, pp. 024- 509.
  30. Chang-Hoon Shim, Fumito Maruoka, and Reiji Hattori, Jan 2010. Structural Analysis on Organic Thin-Film Transistor with Device Simulation. IEEE transactions on electronic devices, vol. 57, No. 1.
  31. Linrun Feng, Xiaoli Xu, and Xiaojun Guo, December 2012. Structure-Dependent Contact Barrier Effects in Bottom-Contact Organic Thin-Film Transistors. IEEE transactions on electronic devices, vol. 59, No. 12.
  32. H. Hosono, M. Yasukawa, and H. Kawazoe, Aug. 1996. Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides. J. Non-Cryst. Solids, vol. 204, pp. 334–344.
  33. Hosono, H. , Jun. 2006. Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids, vol. 352, pp. 851–858.
  34. Abe, K. , Kaji, N. , Kumomi, H. , Nomura, K. , Kamiya, T. , Hirano, M. , et al. , October 2011. Simple Analytical Model of on operation of amorphous In–Ga–Zn–O Thin-Film Transistors. IEEE transaction on electron Devices Vol. 58, no. 10.
  35. Park, S. , Cho, E. , N. , and Yun, I. , April 2012. Investigation on the relationship between channel resistance and sungap density of states of amorphous InGaZnO thin film transistors. Solid State Electronics, vol. 75, pp. 93-96.
  36. Umit Ozgur, Daniel Hofstetter, and Hadis Morko, July 2010. ZnO Devices and Applications: A Review of Current Status and Future Prospects. IEEE, vol. 98, pp. 7.
  37. Singh, S. , and Chakrabarti, P. , 2013. theoretical and experimental studies of characteristics of ZnO TFTs. Journal of electron devices, Vol. 18, pp. 1543-1548.
  38. H. F. Sun, A. R. Alt, H. Benedickter, E. Feltin, J. F. Carlin, M. Gonschorek, et al. , Apr. 2010. 100-nm-gate (Al, In) N/GaN HEMTs grown on SiC with FT = 144 GHz. IEEE Electron Device Lett. , vol. 31, pp. 293–295.
  39. Park, J. , S. , Jeong, J. , K. , Chung, H. , J. , Mo, Y. , G. , and Kim, H. , D. , Feb. 2008. Electronic transport properties of amorphous indium–gallium–zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. , vol. 92, pp. 072-104.
  40. Rongsheng Chen, Wei Zhou, Meng Zhang, and Hoi Sing Kwok, september 2012. Top-Gate GaN Thin-Film Transistors Based on AlN/GaN Heterostructures. IEEE electron device letters, vol. 33, pp. 9.
  41. Rongsheng Chen, Wei Zhou, Meng Zhang, and Hoi Sing Kwok, April 2013. Bottom Gate Thin-Film Transistors Based on GaN Active Channel Layer. IEEE electron device letters, vol. 34, pp. 4.
  42. Guoa, X. , Sporeab, R. , Shannonb, J. , M. , and Silvab, S. , R. , 2009. Down-scaling of Thin-Film Transistors: Opportunities and Design Challenges. The Electrochemical Society, vol. 22, pp. 227.
  43. Rana, S. , B. , Singh, A. , and kaur, N. , june 2012. Structural and optoelectronic characterization of prepared and Sb doped ZnO nanoparticles. J Mater Sci: mater electron, vol. 24, pp. 44-52.
Index Terms

Computer Science
Information Sciences

Keywords

Thin film transistor (TFT) zinc oxide (ZnO) amorphous poly-silicon organic and oxide.