CFP last date
20 December 2024
Reseach Article

Design of an Intelligent Tutorial System based on Ontologies

by Abderrahim El Mhouti, Azeddine Nasseh, Mohamed Erradi
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 89 - Number 1
Year of Publication: 2014
Authors: Abderrahim El Mhouti, Azeddine Nasseh, Mohamed Erradi
10.5120/15468-4085

Abderrahim El Mhouti, Azeddine Nasseh, Mohamed Erradi . Design of an Intelligent Tutorial System based on Ontologies. International Journal of Computer Applications. 89, 1 ( March 2014), 30-34. DOI=10.5120/15468-4085

@article{ 10.5120/15468-4085,
author = { Abderrahim El Mhouti, Azeddine Nasseh, Mohamed Erradi },
title = { Design of an Intelligent Tutorial System based on Ontologies },
journal = { International Journal of Computer Applications },
issue_date = { March 2014 },
volume = { 89 },
number = { 1 },
month = { March },
year = { 2014 },
issn = { 0975-8887 },
pages = { 30-34 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume89/number1/15468-4085/ },
doi = { 10.5120/15468-4085 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:08:08.601957+05:30
%A Abderrahim El Mhouti
%A Azeddine Nasseh
%A Mohamed Erradi
%T Design of an Intelligent Tutorial System based on Ontologies
%J International Journal of Computer Applications
%@ 0975-8887
%V 89
%N 1
%P 30-34
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Today, environments of e-learning aim increasingly to give the learner an active role in learning in order to build their knowledge. They allow thereby integrating a more learner-centered vision. However, learners show differences between learning modes that suits them best. The problem posed is how to propose to the learner a teaching sequence adequate to his/her profile. This work is at the heart of this issue. It is interested in contributing on ontologies and cognitive theories to describe the learning preferences within the Intelligent Tutorial Systems (ITS). The objective of this paper is to propose a model of ITS, based on ontologies and cognitive theories, for adapting the learning resources proposed to a learner according to his/her learning preferences. The determination of these preferences is done through the analysis of learner behavior relying on his/her indicator MBTI (Myers Briggs Type Indicator). The proposed model integrates the main functionalities of an ITS: profiling, updating of the profile, selection, adaptation and presentation of adequate resources.

References
  1. Mizoguchi, R. (2004). Le rôle de l'ingénierie ontologique dans le domaine des EIAH, Revue Sticef, vol. 11.
  2. Felder, R. M. and Brent R. (2005). Understanding Student Differences, Journal of Engineering Education, vol. 94(1), (pp. 57-7).
  3. Barker T. ,Jones S. , Britton C. and Messer D. (2002). The Use of a Co-operative Student Model of Learner Characteristics to Configure a Multimedia Application, User Modeling and User-Adapted Interaction, vol. 12( 2 – 3), (pp. 207 – 241).
  4. Brusilovsky P. (2001). Adaptive Hypermedia, User Modeling and User-Adapted Interaction.
  5. Zukerman I. and Litman D. (2001). Natural Language Processing and User Modeling: Synergies and Limitations, User Modeling and User-Adapted Interaction, vol. 11(1 – 2), (pp. 129 – 158).
  6. Bermudez L. , Piasecki M. ,. (2006). Metadata Community Profiles for the Semantic Web. Geoinformatica, Springer, (10) pp. 159-176.
  7. Sander E. , Meunier J. and Boscminé C. (2004). Approche ontologique et navigation dans un EIAH. Revue Sticef, vol. 11.
  8. Falquet G. , Nerima L. and Ziswiler J. (2004). Utilisation des ontologies dans les environnements d'écriture collaborative d'hyperlivres, expériences et perspectives. Revue Sticef, vol. 11.
  9. Cristea A. I. (2004). What can the Semantic Web do for Adaptive Educational Hypermedia? Educational Technology & Society, vol. 7 (4), (pp. 40-58).
  10. Azouaou F. (2006). Modèles et outils d'annotations pour une mémoire personnelle de l'enseignant, Thèse de Doctorat, spécialité Informatique, Université Joseph Fournier, Grenoble, France.
  11. Piombo C. (2007). Modélisation probabiliste du style d'apprentissage et application à l'adaptation de contenus pédagogiques indexés par une ontologie, Thèse de doctorat, IRIT, France.
  12. Sosnovsky S. (2006). Integration of Two Domain Conceptualizations in a Single Adaptive Hypermedia System, Workshop on Applications of Semantic Web Technologies for e-Learning (SW-EL@AH'06), Ireland.
  13. B. Castello, W. Neto, O. Alvaro et F. Gauthier, Sharing and Reusing Information on Web-Based Learning, SW-EL@AH'06, Dublin, Ireland, June 21-23 2006.
  14. Morales R. , Van Labeke N. and Paul B. (2006). Towards a Learner Modelling Engine for the Semantic Web, Workshop on Applications of Semantic Web Technologies for e-Learning (SW-EL@AH'06), Ireland.
  15. A. Ounnas, I. Liccardi, H. Davis. , D. Millard et S. White, Towards a Semantic Modeling of Learners for Social Networks, SW-EL@AH'06, Dublin, Ireland, June 21-23 2006.
  16. Todd C. R. (2004). Myers-Briggs Type Indicator®, The Skeptic's Dictionary.
  17. Lasnier F. (2000). Réussir la formation par compétences. Montréal : Guérin.
Index Terms

Computer Science
Information Sciences

Keywords

Learner learning style profiling adaptation model ontology MBTI Intelligent Tutorial Systems.