CFP last date
20 December 2024
Reseach Article

Nonsplit Geodetic Number of a Lict Graph

by Venkanagouda M Goudar, Tejaswini K. M., Venkatesha
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 88 - Number 6
Year of Publication: 2014
Authors: Venkanagouda M Goudar, Tejaswini K. M., Venkatesha
10.5120/15360-3836

Venkanagouda M Goudar, Tejaswini K. M., Venkatesha . Nonsplit Geodetic Number of a Lict Graph. International Journal of Computer Applications. 88, 6 ( February 2014), 36-39. DOI=10.5120/15360-3836

@article{ 10.5120/15360-3836,
author = { Venkanagouda M Goudar, Tejaswini K. M., Venkatesha },
title = { Nonsplit Geodetic Number of a Lict Graph },
journal = { International Journal of Computer Applications },
issue_date = { February 2014 },
volume = { 88 },
number = { 6 },
month = { February },
year = { 2014 },
issn = { 0975-8887 },
pages = { 36-39 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume88/number6/15360-3836/ },
doi = { 10.5120/15360-3836 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:06:57.740493+05:30
%A Venkanagouda M Goudar
%A Tejaswini K. M.
%A Venkatesha
%T Nonsplit Geodetic Number of a Lict Graph
%J International Journal of Computer Applications
%@ 0975-8887
%V 88
%N 6
%P 36-39
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A set is a non split geodetic set of , if S is a geodetic set and is connected. The nonsplit geodetic number of a lict graph , denoted by , is the minimum cardinality of a nonsplit geodetic set of . The bounds on non split geodetic number in terms of elements of G and covering number of G. Further the relationship between nonsplit geodetic number and geodetic number of a graph is established.

References
  1. G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph. Networks. 39, 1-6 (2002)
  2. G. Chartrand and P. Zhang , Introduction to Graph Theory, Tata McGraw Hill Pub. Co. Ltd. (2006).
  3. F. Harary, Graph Theory, Addison-Wesely, Reading, MA,(1969)
  4. V. R. Kulli and M. H. Muddebihal. Lict Graph and Litact Graph of a Graph, Journal of Analysis and Computation, Vol. 2. No. 133-43. (2006).
  5. Tejaswini K. M, Venkanagouda M Goudar, Venkatesha & M. H. Muddebihal, "ON THE LICT GEODETIC NUMBER OF A GRAPH", International Journal of Mathematics and Computer Applications Research Vol. 2, Issue 3 65-69, (2012).
  6. Venkanagouda. M. Goudar,Tejaswini K. M. ,Venkatesha, Nonsplit Geodetic Number of a Graph, Indian Journal of pure and applied mathematics(submitted).
Index Terms

Computer Science
Information Sciences

Keywords

Cartesian product Distance Edge covering number geodetic number Vertex covering number.