CFP last date
20 December 2024
Reseach Article

Parallelization of the Algorithm K-means Applied in Image Segmentation

by Cristian Jose´ Lo´pez Del A´ Lamo, Lizeth Joseline Fuentes P´erez, Luciano Arnaldo Romero Calla
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 88 - Number 17
Year of Publication: 2014
Authors: Cristian Jose´ Lo´pez Del A´ Lamo, Lizeth Joseline Fuentes P´erez, Luciano Arnaldo Romero Calla
10.5120/15441-4051

Cristian Jose´ Lo´pez Del A´ Lamo, Lizeth Joseline Fuentes P´erez, Luciano Arnaldo Romero Calla . Parallelization of the Algorithm K-means Applied in Image Segmentation. International Journal of Computer Applications. 88, 17 ( February 2014), 1-4. DOI=10.5120/15441-4051

@article{ 10.5120/15441-4051,
author = { Cristian Jose´ Lo´pez Del A´ Lamo, Lizeth Joseline Fuentes P´erez, Luciano Arnaldo Romero Calla },
title = { Parallelization of the Algorithm K-means Applied in Image Segmentation },
journal = { International Journal of Computer Applications },
issue_date = { February 2014 },
volume = { 88 },
number = { 17 },
month = { February },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-4 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume88/number17/15441-4051/ },
doi = { 10.5120/15441-4051 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:07:49.794210+05:30
%A Cristian Jose´ Lo´pez Del A´ Lamo
%A Lizeth Joseline Fuentes P´erez
%A Luciano Arnaldo Romero Calla
%T Parallelization of the Algorithm K-means Applied in Image Segmentation
%J International Journal of Computer Applications
%@ 0975-8887
%V 88
%N 17
%P 1-4
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Algorithm k-means is useful for grouping operations; however, when is applied to large amounts of data, its computational cost is high. This research propose an optimization of k-means algorithm by using parallelization techniques and synchronization, which is applied to image segmentation. In the results obtained, the parallel k-means algorithm, improvement 50% to the algorithm sequential k-means.

References
  1. Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons Inc, 1 edition, February 1973.
  2. Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy. Advances in Knowledge Discovery and Data Mining. The MIT Press, February 1996.
  3. A. Ferreira, J. M R S Tavares, and F. Gentil. A review of segmentation algorithms for ear image data. In Information Systems and Technologies (CISTI), 2012 7th Iberian Conference on, pages 1–6, 2012.
  4. J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering algorithm. Applied Statistics, 28(1):100–108, 1979.
  5. Mehmed Kantardzic. Data Mining: Concepts, Models, Methods and Algorithms. John Wiley & Sons, Inc. , New York, NY, USA, 2002.
  6. Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global k-means clustering algorithm, 2001.
  7. S. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor. , 28(2):129–137, September 2006.
  8. H. P. Ng, S. H. Ong, K. W C Foong, P. S. Goh, and W. L. Nowinski. Medical image segmentation using k-means clustering and improved watershed algorithm. In Image Analysis and Interpretation, 2006 IEEE Southwest Symposium on, pages 61– 65, 2006.
  9. Suman Tatiraju and Avi Mehta. Image segmentation using kmeans clustering, em and normalized cuts.
Index Terms

Computer Science
Information Sciences

Keywords

parallelization k-means segmentation images