CFP last date
20 February 2025
Reseach Article

Sum of Distance based Algorithm for Clustering Web Data

by Neeti Arora, Mahesh Motwani
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 87 - Number 7
Year of Publication: 2014
Authors: Neeti Arora, Mahesh Motwani
10.5120/15221-3732

Neeti Arora, Mahesh Motwani . Sum of Distance based Algorithm for Clustering Web Data. International Journal of Computer Applications. 87, 7 ( February 2014), 26-30. DOI=10.5120/15221-3732

@article{ 10.5120/15221-3732,
author = { Neeti Arora, Mahesh Motwani },
title = { Sum of Distance based Algorithm for Clustering Web Data },
journal = { International Journal of Computer Applications },
issue_date = { February 2014 },
volume = { 87 },
number = { 7 },
month = { February },
year = { 2014 },
issn = { 0975-8887 },
pages = { 26-30 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume87/number7/15221-3732/ },
doi = { 10.5120/15221-3732 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:05:19.029560+05:30
%A Neeti Arora
%A Mahesh Motwani
%T Sum of Distance based Algorithm for Clustering Web Data
%J International Journal of Computer Applications
%@ 0975-8887
%V 87
%N 7
%P 26-30
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Clustering is a data mining technique used to make groups of objects that are somehow similar in characteristics. The criterion for checking the similarity is implementation dependent. Clustering analyzes data objects without consulting a known class label or category i. e. it is an unsupervised data mining technique. K-means is a widely used clustering algorithm that chooses random cluster centers (centroid), one for each centroid. The performance of K-means strongly depends on the initial guess of centers (centroid) and the final cluster centroids may not be the optimal ones as the algorithm can converge to local optimal solutions. Therefore it is important for K-means to have good choice of initial centroids. An algorithm for clustering that selects initial centroids using criteria of finding sum of distances of data objects to all other data objects have been formed. The proposed algorithm results in better clustering on synthetic as well as real datasets when compared to the K-means technique.

References
  1. J. Han and M. Kamber. 2002. "Data Mining concepts and Techniques", Morgan Kaufmann Publishers.
  2. J. B. MacQueen, 1967. "Some Methods for classification and Analysis of Multivariate Observations", Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability", Berkeley, University of California Press, pp 281-297.
  3. Margaret Dunham, Data Mining 2006. Introductory and advanced concepts, Pearson education.
  4. S. Llyod. 1982. "Least Squares quantization in PCM". IEEE transactions on information theory, 28(2), pp 129-137.
  5. JuanyingXie, Shuai Xiang, WeixinXie, Xinbo Gao. 2011. "An efficient Global K-means Clustering Algorithm", Journal of Computers, Vol 6, No 2, pp 271-279.
  6. S. S. Khan, A. Ahmed. 2004. "Cluster Center initialization algorithm for k-means algorithm", Pattern Recognition Letters, pp 1293-1302.
  7. Bradley, P. S. , Fayyad, U. M. 1998. , "Refining initial points for K-Means clustering", In Proceedings of 15th International Conf. on Machine Learning. Morgan Kaufmann, San Francisco, CA, pp 91-99.
  8. Likas, A. , Vlassis, N. , Verbeek, J. J. 2003. " The global k-means clustering algorithm",In Pattern Recognition, Vol. 36. pp 451-461.
  9. Fang Yuan, Zeng-HuiMeng, Hong-Xia Zhang, Chun-Ru Dong. 2004. ,"A new algorithm to Get the Initial Centroids",In proceedings of the third International Conference on Machine Learning and Cybernetics, Shanghai, pp26-29.
  10. A. R Barakbah, A. Helen. 2005. "Optimized K-means: an algorithm of initial centroids optimization for K-means. In proceedings of Soft Computing, Intelligent Systems and Information Technology (SIIT), pp2-63-66.
  11. Fahim A. M. , Salem A. M. , Torkey F. A. , Ramadan M. A. 2006. "An efficient enhanced k-means clustering algorithm", Journal of Zhejiang University Science, 7(10), pp1626-1633.
  12. A. R Barakbah, K. Arai. 2007. "Hierarchical K-means: an algorithm for centroids initialization for K-means",Reports of the faculty of Science & Engineering, Saga University, Japan, Vol. 36, No. 1.
  13. A. R Barakbah, Y. Kiyoki. 2009. "A pillar Algorithm for K-means optimization by distance maximization for initial centroid designation", IEEE.
  14. M. Stricker and M. Orengo. 1995. "Similarity of color images", Storage and Retrieval for Image and Video Databases III (SPIE), pp381-392.
  15. http://sites. stat. psu. edu/~jiali/ for image. cd image database
  16. http://sci2s. ugr. es/keel/dataset_smja. php?cod=230 for Corel5k image database
  17. http://wang. ist. psu. edu/docs/related/ for image. orig image database
  18. Jia Li, James Z. Wang, ``Automatic linguistic indexing of pictures by a statistical modeling approach,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 25, no. 9, pp. 1075-1088, 2003.
Index Terms

Computer Science
Information Sciences

Keywords

Clustering K-means Recall Precision