CFP last date
20 December 2024
Call for Paper
January Edition
IJCA solicits high quality original research papers for the upcoming January edition of the journal. The last date of research paper submission is 20 December 2024

Submit your paper
Know more
Reseach Article

An Effective Parallel XML Fuzzy Query Processing

by K. Naresh Kumar, N. V. E. S Murthy, Ch. Satyanand Reddy
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 86 - Number 9
Year of Publication: 2014
Authors: K. Naresh Kumar, N. V. E. S Murthy, Ch. Satyanand Reddy
10.5120/15012-3294

K. Naresh Kumar, N. V. E. S Murthy, Ch. Satyanand Reddy . An Effective Parallel XML Fuzzy Query Processing. International Journal of Computer Applications. 86, 9 ( January 2014), 14-22. DOI=10.5120/15012-3294

@article{ 10.5120/15012-3294,
author = { K. Naresh Kumar, N. V. E. S Murthy, Ch. Satyanand Reddy },
title = { An Effective Parallel XML Fuzzy Query Processing },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 86 },
number = { 9 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 14-22 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume86/number9/15012-3294/ },
doi = { 10.5120/15012-3294 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:03:45.792365+05:30
%A K. Naresh Kumar
%A N. V. E. S Murthy
%A Ch. Satyanand Reddy
%T An Effective Parallel XML Fuzzy Query Processing
%J International Journal of Computer Applications
%@ 0975-8887
%V 86
%N 9
%P 14-22
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Representation and handling of inexactness in information has become the major issues in modern database system and next generation information systems. In order to deal with the information inexactness, fuzzy logic is integrated with various database model and theories. This paper presents a query processing model could coupled with fuzzy logic in XML database system. Our system is based on traditional XML databases, while permitting the storage of fuzzy data as well as crisp data. Crisp data are the usual precise data handled by the traditional databases whereas fuzzy logic gives the output in certain range. In this paper we are dealing with the concept of critical architectural component named fuzzy meta- knowledge base. The main aim of fuzzy meta- knowledge basis to keep the different types of fuzzy divisions for database attributes. Fuzzy meta- knowledge base defines and demonstrates data of fuzzy nature is stored in the fuzzy meta- knowledge base. The fuzzy query language is based on X-PATH. It can accept any type of fuzzy expressions in any condition in query part. For improving the performance of X-PATH, we are using Parallel Path Stack algorithm. Parallel Path Stack algorithm speed XML Query processing performance significantly.

References
  1. Dey D. and Sumit S. , "A Probabilistic Relational Model and Algebra," ACM TODS, Vol. 21, pp. 339-369, Sep. 1996.
  2. Buckles B. P. and Petry F. E. , "A Fuzzy Representation of Data for Relational Databases," Fuzzy Sets and Systems, 7, pp. 213 -226, 1982.
  3. Fernandez M. , Tan W. -C. , and Suciu D. , "Silk Route: Trading between Relations and XML". Proceedings of WWW, Amsterdam , May 2000.
  4. Fong J. , Pang F. and Bloor C. , "Converting Relational Database into XML Document", Proceedings of the International Workshop on Electronic Business Hubs , September, pp. 61 -65, 2001.
  5. Lee, D. , Mani, M. , Chi u, F. , and Chu W. W. , "Schema Conversion Methods between XML and Relational Models," Knowledge Transformation for the Semantic Web, 2003.
  6. Lee, D. , Mani, M. , Chiu, F. , and Chu W. W. , "NeT&CoT: translating relational schemas to XML schemas using semantic constraints," Proceedings of ACM CIKM, 2002.
  7. Lee, J. , Fanjiang, Y. , Kuo, J. , and Lin, Y. , "Modeling Imprecise Requirements with XML," Fuzzy Systems, 2, pp. 861-866, May 2002.
  8. TurowskiK. andWeng U. , "Representing and processing fuzzy information –an XML -based approach ,"Knowledge-Based Systems , Vol. 15, pp. 67 -75, 2002.
  9. G. Koloniari, E. Pitoura, Peer-to-peer management of XML data, issues and research challenges, SIGMOD Record 34 (2), 2005.
  10. R. Nayak, M. Zaki (Eds. ), Knowledge discovery from XML documents, PAKDD 2006 workshop proceedings, Lecture Notes in Computer Science, vol. 3915, Springer-Verlag, Heidelberg, 2006.
  11. A. Boukottaya, C. Vanoirbeek, Schema matching for transforming structured documents, The 2005 ACM Symposium on Document engineering, Bristol, United Kingdom, 2005.
  12. R. Nayak, R. Witt, A. Tonev, Data mining and XML documents, The 2002 International Workshop on the Web and Database (WebDB 2002), June 24–27, 2002.
  13. Oracle Berkeley DB XML, http://www. oracle. com/database/berkeley-db/xml/index. html.
  14. J. M. Medina, J. Galindo, F. Berzal, J. M. Serrano, Using Object Relational features to build a Fuzzy Database Server", VIII Intl. Conf. Of information processing and management of uncertainty in knowledge-based systems (IPMU 2002), pp 307-314. July 1-5, 2002.
  15. J. C. Cubero, N. Mar¶³n, J. M. Medina, O. Pons, M. A. Vila, Fuzzy object Management in an Object-Relational Framework", X Intl. Conf. of information processing and management of uncertainty in knowledge-based systems, pp. 1767-1774. July 4-9 2004.
  16. H. Prade, C. Testemale, Generalizing Database Relational Algebra for the Treatmentof Incomplete or Uncertain Information andVague Queries", Information Sciences Vol. 34, 1984
  17. M. Zemankova-Leech, A. Kandel, "Fuzzy Relational Databases a Key to Expert Systems", KÄ oln, Germany, TÄUV Rheinland, 1984.
  18. S. Fukami, M. Umano, M. Muzimoto, H. Tanaka, "Fuzzy Database Retrieval and Manipulation Language", IEICE Technical Reports, Vol. 78, N. 233, pp. 65{72, AL-78-85 (Automata and Language) 1979.
  19. M. Umano, Freedom-O: A Fuzzy Database System", Fuzzy Information and Decision Processes. Gupta-Sanchez edit. NorthHoland Pub. Comp. 1982.
  20. J. Galindo, J. M. Medina, O. Pons, J. C. Cubero, "A Server for Fuzzy SQL Queries", Flexible Query Answering Systems, eds. T. Andreasen, H. Christiansen and H. L. Larsen, Lecture Notes in Arti¯cial Intelligence (LNAI) 1495, pp. 164{174. Ed. Springer, 1998.
  21. JianLiu•Z. M. Ma•XueFeng, "Storing and querying fuzzy XML data in relational databases", Springer Science+Business Media New York, 2013.
  22. R. D. Rodrigues, A. J. O. Cruz, R. T. Cavalcante, "Aliança: A proposal for a fuzzy database architecture incorporating XML", Elsevier B. V. , 2008.
  23. Ying Jin, SangeethaVeerappan,"A Fuzzy XML Database System: Data Storage and Query Processing", IEEE, 2010.
  24. Ting Yang, Jinmao Wei, Baoquan Fan, Xu Wang, Haiwei Zhang, "Structural Similarity Computation Based On Extended Edge Matching Method", International Conference on Fuzzy Systems and Knowledge Discovery, 2012.
  25. Ying Jin, Hemal J Mehta, "Composite Event Processing in an Active Rule-Based Fuzzy XML Database System",IEEE IRI, 2011.
  26. Jian Liu, Z. M. Ma, Li Yan, "FTwig: Efficient Algorithm for Processing Fuzzy XML Twig Pattern Matching", IEEE, 2010.
Index Terms

Computer Science
Information Sciences

Keywords

XML Fuzzy logic X-PATH fuzzy query Fuzzy meta- knowledge base.