We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

A Review on Natural Phenomenon of Fractal Geometry

by Ashish Negi, Ankit Garg, Akshat Agrawal
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 86 - Number 4
Year of Publication: 2014
Authors: Ashish Negi, Ankit Garg, Akshat Agrawal
10.5120/14970-3157

Ashish Negi, Ankit Garg, Akshat Agrawal . A Review on Natural Phenomenon of Fractal Geometry. International Journal of Computer Applications. 86, 4 ( January 2014), 1-7. DOI=10.5120/14970-3157

@article{ 10.5120/14970-3157,
author = { Ashish Negi, Ankit Garg, Akshat Agrawal },
title = { A Review on Natural Phenomenon of Fractal Geometry },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 86 },
number = { 4 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume86/number4/14970-3157/ },
doi = { 10.5120/14970-3157 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:03:18.686855+05:30
%A Ashish Negi
%A Ankit Garg
%A Akshat Agrawal
%T A Review on Natural Phenomenon of Fractal Geometry
%J International Journal of Computer Applications
%@ 0975-8887
%V 86
%N 4
%P 1-7
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Today Fractal geometry is completely new area of research in the field of computer science and engineering. It has wide range of applications. Fractals in nature are so complicated and irregular that it is hopeless to model them by simply using classical geometry objects. Benoit Mandelbrot, the father of fractal geometry, from his book The Fractal Geometry of Nature, 1982. This paper explor various concepts of fractal i. e. fractal dimension, various techniques to generate fractal, their characteristics and their application in real life.

References
  1. Yashwant s chauhan, Rajeshri rana, Ashish negi, "Mandel-Bar sets of Inverse Complex Function", International Journal of computer applications(0975-8887), Vol 9-No. 2, Nov-2010.
  2. Yashwant s chauhan, Rajeshri rana, Ashish negi, "New Julia sets of Ishikawa Iterates", International Journal of computer applications(0975-8887), Vol 7-No. 13, oct-2010.
  3. M. Rani and V. Kumar, "Superior Mandelbrot set". J korea Soc, Math, edu, series, Dresearch in maths, Edu, no. 4,8(2004), 279-291.
  4. Chauhan Y. S. Rana R,and Negi A,, "Mandel-Bar Sets of Inverse Complex Function", International Journal of Computer Applications (0975-8887) Volume 9- No. 2, November 2010.
  5. Devaney RL. A first course in chaotic dynamical systems: theory and experiment. CO: Westview Press; 1992.
  6. Barnsley, M. , 1988, "Fractals Everywhere (San Diego: Academic Press, Inc).
  7. George Cantor "On the Power of Perfect Sets of Points in Classics on Fractals" (Westview Press, 2004) pp. 1123.
  8. H. Von Koch, "On a continuous curve without tangents constructible from elementary geometry", Classics on fractals (G. Edgar, ed. ), Addison-Wesley, Reading, Massachusetts, 1993, pp. 25-45.
  9. Peitgen, H. O. ; Jurgens, H. ; Saupe, D. : "Chaos and Fractals", New frontiers of science, New York Springer,1992 984pp.
  10. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Company, 1982).
  11. C. Pickover, "Computers, Pattern, Chaos, and Beauty", St. Martin?s Press, NewYork, 1990.
  12. Peitgen H, Jürgens H, Saupe D. Chaos and fractals: new frontiers of science. New York: Springer-Verlag; 2004.
  13. M. F. Barnsley and R. Hawley, Fractals Everywhere (Boston: Academic Press Professional, 1993).
  14. http://math. bu. edu/DYSYS/explorer/tour1. html
  15. http://library. thinkquest. org/26242/full/
  16. http://people. maths. ox. ac. uk/hausel/m408k/bowens/
  17. Dr. Mamta rani, saloni, "Fractals: A Research", International journal of computer engineering and technology, ISSN 0976 – 6367(Print),Volume 4, Issue 4, July-August (2013), pp. 289-307.
  18. Yashwant s chauhan, Rajeshri rana, Ashish negi, "complex dynamics of ishikawa iterates for non integer values", International Journal of computer applications(0975-8887), Vol 9-No. 2, Nov-2010.
  19. Mustapha R. ; Saeki, O, "Extending generalized Fibonacci sequences and their Binet type formula", 2000 Mathematics Subject Classification. Primary 40A05; Secondary 40A25.
Index Terms

Computer Science
Information Sciences

Keywords

Fractals dimension IFS