CFP last date
20 December 2024
Call for Paper
January Edition
IJCA solicits high quality original research papers for the upcoming January edition of the journal. The last date of research paper submission is 20 December 2024

Submit your paper
Know more
Reseach Article

On Rayleigh-Ritz Method in Three-Parameter Eigenvalue Problems

by Surashmi Bhattacharyya, Arun Kumar Baruah
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 86 - Number 3
Year of Publication: 2014
Authors: Surashmi Bhattacharyya, Arun Kumar Baruah
10.5120/14969-3149

Surashmi Bhattacharyya, Arun Kumar Baruah . On Rayleigh-Ritz Method in Three-Parameter Eigenvalue Problems. International Journal of Computer Applications. 86, 3 ( January 2014), 38-42. DOI=10.5120/14969-3149

@article{ 10.5120/14969-3149,
author = { Surashmi Bhattacharyya, Arun Kumar Baruah },
title = { On Rayleigh-Ritz Method in Three-Parameter Eigenvalue Problems },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 86 },
number = { 3 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 38-42 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume86/number3/14969-3149/ },
doi = { 10.5120/14969-3149 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:03:17.992889+05:30
%A Surashmi Bhattacharyya
%A Arun Kumar Baruah
%T On Rayleigh-Ritz Method in Three-Parameter Eigenvalue Problems
%J International Journal of Computer Applications
%@ 0975-8887
%V 86
%N 3
%P 38-42
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This paper deals with the computation of the eigenvalues of a three-parameter Sturm-Liouville problem in the form of ordinary differential equation using Rayleigh-Ritz Method, a method which is based on the principle of variational methods. This method has been effective in computing the eigenvalues of self-adjoint problems. The resulting equations obtained in applying Rayleigh-Ritz method on the problem are solved to find the rough estimates of the eigenvalues of the problem. Rough estimates are used as starting approximations in the corresponding shooting method to obtain their actual values.

References
  1. Arscott, F. M. 1962. Two-parameter eigenvalue problems in differential equation. Mathematics research center, United States Army, The University of Wisconsin.
  2. Atkinson, F. V. 1968. Multiparameter spectral theory, Bull. Am. Math. Soc. , 75, (1-28).
  3. Sleeman, B. D. 1972. The two-parameter Sturm-Liouville problem for ordinary differential equations, II, Proc. of the American Math. Soc vol. 34(1), 165-170.
  4. Browne, P. J. 1972. A multiparameter eigenvalue problem, J. Math. Analysis and Appl. , 38, 553-568.
  5. Baruah, A. K. 1987. Estimation of eigen elements in a two- parameter eigenvalue problem, Ph. D. Thesis, Dibrugarh University, Assam.
  6. Baruah, A. K. 2012. Ritz method in multiparameter eigenvalue problem, IFRSA's International of Computing, Vol. 2(1), 156-162.
  7. Konwar, J. 2002. Certain studies of two-parameter eigenvalue problem, Ph. D. thesis, Dibrugarh University, Assam.
  8. Changmai, J. 2009. Study of two-parameter eigenvalue problem in the light of finite element procedure, Ph. D thesis, Dibrugarh University, Assam.
  9. Plestanjak, B. 2006. Multiparameter eigenvalue problems, 2nd International Conference on Structural Matrices, Hongkong Baptist University.
  10. Fox, L. , Hayes, L. And Mayers, D. F. 1972. The double eigenvalue problem : Topics in numerical analysis, Proc. Roy Irish Acad. Con. , Univ. College, Dublin, Academic Press, New York, London, 93-112.
  11. Chanane, B. , and Boucherif, A. 2012. Two-parameter Sturm-Liouville problems, ar Xiv:1208. 3695v1 [math. SP]. King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
  12. Gregus, M. , Nueman, F. and Arscott, F. M. 1971. Three point boundary value problems in differential equation, J, London Math. Soc(2),3, 429-436.
  13. Sleeman, B. D. , 1972. Completeness and expansion theorems for a two-parameter eigenvalue problem in ordinary differential equations using variational principles, J. , London Math. Soc. (2),6, 705-712.
  14. Jain, M. K. , 1983. Numerical solution of differential equations, Wiley Eastern Ltd. ,New-Delhi, 522-528.
  15. Sadiku, M. N. O. 2001. Numerical Techniques in Electromagnetics, CRC Press, 235-274.
  16. Collatz, L. 1968. Multiparameter eigenvalue problem in Inner Product Spaces , J. Compu. and Syst. Scie. , 2, 333-341.
  17. Rao, K. S. 2007. Numerical methods for scientists and engineers, Prentices-Hall of India(P) Ltd.
  18. Sastry, S. S. 2006. Introductory methods of numerical analysis, Prentices-Hall of India(P) Ltd.
Index Terms

Computer Science
Information Sciences

Keywords

Eigenvalue eigenfunction multiparameter variational method Rayleigh-Ritz method.