CFP last date
20 January 2025
Reseach Article

On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces

by Mausumi Sen
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Number 3
Year of Publication: 2014
Authors: Mausumi Sen
10.5120/14823-3057

Mausumi Sen . On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces. International Journal of Computer Applications. 85, 3 ( January 2014), 30-33. DOI=10.5120/14823-3057

@article{ 10.5120/14823-3057,
author = { Mausumi Sen },
title = { On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 85 },
number = { 3 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 30-33 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume85/number3/14823-3057/ },
doi = { 10.5120/14823-3057 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:01:33.408756+05:30
%A Mausumi Sen
%T On I-Limit Superior and I-Limit Inferior of Sequences in Intuitionistic Fuzzy Normed Spaces
%J International Journal of Computer Applications
%@ 0975-8887
%V 85
%N 3
%P 30-33
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this article we introduce the notions of I-limit superior and I-limit inferior for sequences in intuitionistic fuzzy normed linear spaces and prove intuitionistic fuzzy analogue of some results of I-limit superior and I-limit inferior for real sequences. The concept of I-limit points and I-cluster points in intuitionistic fuzzy normed linear spaces are introduced and some of their properties have been established.

References
  1. Anastassiou, G. A. 2004. Fuzzy approximation by fuzzy convolution type operators. Comput. Math. Appl. 48,1369-1386.
  2. Atanassov, K. T. 1986. Intuitionistic fuzzy sets. Fuzzy Sets. Syst. 20,87-96.
  3. Demirci, K. 2001. I-limit superior and I-limit inferior, Math. Communications. 6(2), 165-172.
  4. Erceg, M. A. 1979. Metric spaces in fuzzy set theory. J. Math. Anal. Appl. 69, 205-230.
  5. Jäger, G. 2000. Fuzzy uniform convergence and equicontinuity. Fuzzy Sets Syst. 109,187-198.
  6. Kostyrko, P. , Šalát, T. and Wilczy?ski, W. 2000. I-convergence. Real Anal. Exchange. 26, 669-686.
  7. Saadati, R. , Park, J. H. 2006. Intuitionistic fuzzy Euclidean normed spaces. Commun. Math. Anal. 12,85-90.
  8. Schweizer, B. , Sklar, A. 1960. Statistical metric spaces. Pacific J. Math. 10, 314-344.
  9. Zadeh, L. A. 1965. Fuzzy sets. Inform. Cont. 8 , 338-353.
Index Terms

Computer Science
Information Sciences

Keywords

Intuitionistic fuzzy normed linear space I-convergence I-limit superior I-limit inferior