CFP last date
20 January 2025
Reseach Article

Detecting the Contours via a New Approximation of the Gradient

by Mohamed Lagzouli, Mustapha Rachidi, Youssfi Elkettani
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Number 17
Year of Publication: 2014
Authors: Mohamed Lagzouli, Mustapha Rachidi, Youssfi Elkettani
10.5120/14933-3480

Mohamed Lagzouli, Mustapha Rachidi, Youssfi Elkettani . Detecting the Contours via a New Approximation of the Gradient. International Journal of Computer Applications. 85, 17 ( January 2014), 16-21. DOI=10.5120/14933-3480

@article{ 10.5120/14933-3480,
author = { Mohamed Lagzouli, Mustapha Rachidi, Youssfi Elkettani },
title = { Detecting the Contours via a New Approximation of the Gradient },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 85 },
number = { 17 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 16-21 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume85/number17/14933-3480/ },
doi = { 10.5120/14933-3480 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:02:42.655648+05:30
%A Mohamed Lagzouli
%A Mustapha Rachidi
%A Youssfi Elkettani
%T Detecting the Contours via a New Approximation of the Gradient
%J International Journal of Computer Applications
%@ 0975-8887
%V 85
%N 17
%P 16-21
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Contours detection is a key component of many image processing and computer vision. This paper proposes and validates a new efficient gradient method for detecting the contours in grayscale image. This method is based on the average of two derivatives, obtained from two different steps. This mathematical formulation, derived from a discrete numerical differentiation of image, plays a central role in this method. There are presented some operators and mask of discrete functions, which are effective for the detection of contours. Comparison of the mask obtained using the two derivatives operator, with the usual linear masks, allows us to show the efficiency of the new mask.

References
  1. Jean-Paul Chehab. 2009. Analyse discrète : Interpolation Polynomiale, 3-6.
  2. Simai He, Zhening LI and Shuzhong Zhang. 2010. Approximation Algorithms for Discrete Polynomial Optimization.
  3. V. Torre and T. A. Poggio. On Edge Detection. 1986. In IEEE Transactions on Pattern Analysis and Machine intelligence, PAMI-8, 2(March 1986), 147- 163.
  4. J . W. Modestino, R . W. Fries . 1977. Edge detection in noisy images using recursive digital filter. Compt. Graphics and Image Processing, 6(1977), 409- 433.
  5. T. Bohlen and Saenger E H. 2006. Accuracy of heterogeneous staggered-grid finite- difference modeling of Rayleigh waves. Geophysics 71(2006), T109?T115.
  6. T. Kapur, L. Yezzi, and L. Zöllei. 2001. A variational framework for joint segmentation and registration, in the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001), IEEE Computer Society (2001), 44–51.
  7. Yang Liu and Mrinal K. Sen. 2009. Numerical modeling of wave equation by a truncated high-order finite-difference method, Earthq Sci 22(2009), 205-213.
  8. Okunuga, S. A. , and Akanbi M, A. 2004. Computational Mathematics. First Course, WIM Pub. Lagos, Nigeria.
  9. Jae H. Park. 1999. Chebyshev Approximation of Discrete Polynomials and Splines. Blacksburg, Virginia. 18-23
  10. A. Beghdadi and A. Le Negrate. 1989. Contrast Enhancement Technique Based on Local Detection of Edges. Computer Vision, Graphics, and Images Processing. 46(1989), 162-174.
  11. M. Lagzouli, Y. Elkettani. 2012. La Détection des Contours dans les Images Numériques. au colloque 7ème Rencontre Nationale des jeunes chercheurs en Physique « RNJCP7 » à Faculté des sciences Ben M'sik Casablanca –Maroc.
  12. N. Paragios and R. Deriche. 2000. Geodesic active contours and level sets for the detection and tracking of moving objects, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 266– 280.
  13. T. Preusser, M. Droske, C. S. Garbe, A. Telea, and M. Rumpf. 2007. A Phase Field Method For Joint Denoising, Edge Detection, And Motion Estimation. In Image Sequence Processing. Society for Industrial and Applied Mathematics, SIAM J. APPL. MATH.
  14. Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi. 2005. Particle filtering for geometric active contours with application to tracking moving and deforming objects. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE Computer Society. 2(2005), 2–9.
  15. P. Puiseux. 2006. Analyse discrète : approximations polynomiales, 1-4.
  16. Gonzalez C. R. and R. 1992. Woods Digital Image Processing, Addison Wesley, 414-428.
  17. Jean-Michel JOLION. 1994. Multiresolution Analysis of Contrast in Digital Images. Laboratory of Computer systems Industrial Production and Signal Processing, 11(March 1994), 245-255.
  18. S. L. Keeling and W. Ring. 2005. Medical image registration and interpolation by optical flow with maximal rigidity, J. Math. Imaging Vision, 23 (2005), 47-65.
  19. P. Kornprobst, R. Deriche. 1999. and G. Aubert, Image sequence analysis via partial differential equations, J. Math. Imaging Vision, 11 (1999), 5-26.
  20. M. Lagzouli, Y. Elkettani. 2012. Traitement d'Image par Differences Finies et la Notion du Contour. Au colloque Modélisation et Simulation Numérique Méthode des Eléments finis et Ondelettes « MNOTSI-2012 » à l'école des ingénieurs –ENSA- université ibn Tofail Kenitra- Maroc.
  21. H. -H. Nagel and W. 1986. Enkelmann, An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences, IEEE Trans. Pattern Anal. Mach. Intell. , 8 (1986), 565–593.
  22. P. Nesi. 1993. Variational approach to optical flow estimation managing discontinuities, Image Vision Comput. , 11 (1993), 419–439.
Index Terms

Computer Science
Information Sciences

Keywords

Steps Mask Operator Mixture of two steps Convolution kernel Discrete functions