CFP last date
20 January 2025
Reseach Article

New-Fangled Mandelbrot and Julia Sets for Logarithmic Function

by Suraj Singh Panwar, Pawan Kumar Mishra
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Number 13
Year of Publication: 2014
Authors: Suraj Singh Panwar, Pawan Kumar Mishra
10.5120/14899-3390

Suraj Singh Panwar, Pawan Kumar Mishra . New-Fangled Mandelbrot and Julia Sets for Logarithmic Function. International Journal of Computer Applications. 85, 13 ( January 2014), 7-14. DOI=10.5120/14899-3390

@article{ 10.5120/14899-3390,
author = { Suraj Singh Panwar, Pawan Kumar Mishra },
title = { New-Fangled Mandelbrot and Julia Sets for Logarithmic Function },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 85 },
number = { 13 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 7-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume85/number13/14899-3390/ },
doi = { 10.5120/14899-3390 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:02:20.157502+05:30
%A Suraj Singh Panwar
%A Pawan Kumar Mishra
%T New-Fangled Mandelbrot and Julia Sets for Logarithmic Function
%J International Journal of Computer Applications
%@ 0975-8887
%V 85
%N 13
%P 7-14
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper we explore the dynamics of complex logarithmic function for integer and non-integer values. We have used Ishikawa iteration method for generating fractals and analyzed them.

References
  1. Mandelbrot, Benoit B. , "The fractal geometry of nature. " Macmillan. ISBN 978-0-7167-1186-5, 1983.
  2. Barnsley, Michale F. , Devaney, Robert L. , Mandelbrot, Benoit B. , Peitgen, Heinz-Otto, Saupe, Dietmar and Voss, Richard F. , "The Science of Fractal Images", Springer – Verlag 1988.
  3. Batty, Michael ,"Fractals - Geometry Between Dimensions," New Scientist (Holborn Publishing Group) 105 (1450): 31, 1985-04-04.
  4. Negi, Ashish, "Generation of Fractals and Applications", Thesis, Gurukul Kangri Vishwavidyalaya, 2005.
  5. Mandelbrot, Benoit B. , " Fractals and Chaos" Berlin: Springer. pp. 38, ISBN 978-0-387-20158-0. "A fractal set is one for which the fractal (Hausdorff-Besicovitch) dimension strictly exceeds the topological dimension", 2004.
  6. Edgar, Gerald, "Classics on Fractals", Boulder, CO: Westview Press. ISBN 978-0-8133-4153-8, 2004.
  7. Agarwal Shafali and Negi, Dr. Ashish, "Midgets of Transcendental Superior Mandelbar Set", International Journal of Computer Science Issues (IJCSI), Vol. 9, Issue 4, No. 3, July 2012.
  8. Negi, Ashish and Rani, Mamta, "Midgets of Superior Mandelbrot Set", Chaos, Solitons and Fractals, July 2006.
  9. Chauhan,Y. S. , Rana R. and Negi, Ashish, "New Julia Sets of Ishikawa Iterates", International Journal of Computer Applications (IJCA), Volume 7, No. 13, October 2010.
  10. Ishikawa, S, "Fixed points by a new iteration method", Proc. Amer. Math. Soc. 44, (1974), pp. 147-150.
  11. Chauhan,Y. S. Rana R. and Negi, Ashish, "New Tricorn & Multicorns of Ishikawa Iterates", International Journal of Computer Applications (IJCA), Volume 7, No. 13, October 2010.
  12. Rana, R. , Chauhan Y. S. and Negi, Ashish , "Ishikawa Iterates for Logarithmic function", International Journal of Computer Applications (IJCA), Volume 15, No. 5, February 2011.
  13. Daveney, R. L. , "An Introduction to Chaotic Dynamical Systems ", Springer-Verlag, New York. Inc. 1994.
  14. Devaney, Robert L. ,"A First Course in Chaotic Dynamical Systems: Theory and Experiment", Addison-Wesley, MR1202237, 1992.
  15. Peitgen H. and Richter P. H. , "The Beauty of Fractals", Springer-Verlag, Berlin, 1986.
Index Terms

Computer Science
Information Sciences

Keywords

Fractals Mandelbrot set Julia set Mann Iteration Ishikawa Iteration Computer Graphics Fixed point and Graph.