CFP last date
20 January 2025
Reseach Article

Genome Annotation and Structure Predictions for Hypothetical Proteins in Agrobacterium fabrum str. C58 plasmid At

by Azeem Siddiqui, Mohd. Ahmad, Archis Pandya, Swapnil Sanmukh, Krishna Khairnar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Number 1
Year of Publication: 2014
Authors: Azeem Siddiqui, Mohd. Ahmad, Archis Pandya, Swapnil Sanmukh, Krishna Khairnar
10.5120/14804-3012

Azeem Siddiqui, Mohd. Ahmad, Archis Pandya, Swapnil Sanmukh, Krishna Khairnar . Genome Annotation and Structure Predictions for Hypothetical Proteins in Agrobacterium fabrum str. C58 plasmid At. International Journal of Computer Applications. 85, 1 ( January 2014), 22-24. DOI=10.5120/14804-3012

@article{ 10.5120/14804-3012,
author = { Azeem Siddiqui, Mohd. Ahmad, Archis Pandya, Swapnil Sanmukh, Krishna Khairnar },
title = { Genome Annotation and Structure Predictions for Hypothetical Proteins in Agrobacterium fabrum str. C58 plasmid At },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 85 },
number = { 1 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 22-24 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume85/number1/14804-3012/ },
doi = { 10.5120/14804-3012 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:01:20.026439+05:30
%A Azeem Siddiqui
%A Mohd. Ahmad
%A Archis Pandya
%A Swapnil Sanmukh
%A Krishna Khairnar
%T Genome Annotation and Structure Predictions for Hypothetical Proteins in Agrobacterium fabrum str. C58 plasmid At
%J International Journal of Computer Applications
%@ 0975-8887
%V 85
%N 1
%P 22-24
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The in-silico approach was utilised for prediction of structure, function and sub-cellular localization of the hypothetical proteins in Agrobacterium fabrum str. C58 plasmid At. In Agrobacterium fabrum str. C58 plasmid At out of 209 genes screened for hypothetical proteins, structures, functions and sub-cellular localization were predicted for 84 hypothetical protein. The Bioinformatics web tools like CDD-BLAST, INTERPROSCAN and PFAM were used for the functional annotations of hypothetical proteins; Cello v 2. 5 was used to determine the sub- cellular localization of annotated hypothetical proteins whereas, PS2 Server-Protein Structure Prediction server was used for generating 3-D structures of the identified proteins by searching protein databases for the presence of conserved domains and templetes. This Insilico study revealed much helpful information regarding the understanding of functional characteristics of hypothetical proteins in Agrobacterium fabrum str. C58 plasmid At as well as their role in the life cycle of the bacterium.

References
  1. Alejandro AS, Aravind L, Thomas LM, Sergei S, John LS, Yuri IW, Eugene VK, Stephen F A. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29(14), 2994-3005, (2001).
  2. Alex B, Lachlan C. , Richard D, Robert DF. , Volker H, Sam GJ, Ajay K, Mhairi M, Simon M, Erik LLS. , David JS. , Corin Y, Sean RE. The Pfam families' database. Nucleic Acids Research, Vol. 32, D138-D141, (2004).
  3. Allardet-Servent A, Michaux-Charachon S, et al. (1993). Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. Journal of bacteriology 175(24): 7869-7874.
  4. Altschul SF. , Madden TL. , Schaffer AA. , Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 (17), 3389-402, (1997).
  5. Aron MB, John BA, Myra KD, Carol DS, Noreen RG, Marc G, Luning H, Siqian H, David IH, John DJ, Zhaoxi K, Dmitri K, Christopher JL, Cynthia AL, Chunlei L, Fu L, Shennan L, Gabriele HM, Mikhail M, James SS. , Narmada T, Roxanne AY. , Jodie JY, Dachuan Z, Stephen HB. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research, Vol. 35, D237–D240, (2006).
  6. Binns, AN and Thomashow MF. Cell biology of Agrobacterium infection and transformation of plants. Annual Reviews in Microbiology 42(1): 575-606 (1988).
  7. Cédric N, Desmond GH, Jaap H. T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217, (2000).
  8. Chih-Chieh C, Jenn-Kang H, Jinn-Moon Y (PS)2: protein structure prediction server Nucl. Acids Res. 34, W152-W157, (2006).
  9. Dessaux Y, Petit A, Farrand SK, Murphy PJ, in The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, H. P. Spaink, A. Kondorosi, P. J. J. Hooykaas, Eds. (Kluwer Academic, Dordrecht, Netherlands, 1998), pp. 173Ð197.
  10. Edward E, Gary LG. , Osnat H, John M, John O, Roberto JP, Linda B, Delwood R. , Andrew J H. Biological function made crystal clear- annotation of hypothetical proteins via structural genomics. Current Opinion in Biotechnology 11, 25-30, (2000).
  11. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A , Liu F, Wollam C, Allinger M, Doughty D , Scott C , Lappas C, Markelz B , Flanagan C, Crowell C, Gurson J, Lomo,C. , Sear C, Strub G, Cielo C and Slater S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294 (5550), 2323-2328 (2001)
  12. Hamilton R and Fall M. The loss of tumor-initiating ability inAgrobacterium tumefaciens by incubation at high temperature. Cellular and Molecular Life Sciences 27(2): 229-230 (1971).
  13. Paunikar WN, Sanmukh SG, and Ghosh TK. Exploring the hypothetical proteins in Rizhophages and their role in influencing Rhizobium species in soil. CiiT International Journal of Artificial Intelligent systems and Machine Learning (2011).
  14. Rosenberg C. and Huguet T. The pAtC58 plasmid of Agrobacterium tumefaciens is not essential for tumour induction. Molecular and General Genetics MGG 196(3): 533-536 (1984).
  15. Sanmukh SG and Paunikar WN. Deciphering unknown proteins in Human Herpes Viruses. CiiT International Journal of Automation and Autonomous System (2012).
  16. Sanmukh SG and Paunikar WN. Study of hypothetical proteins in Shigella phages. CiiT International Journal of fuzzy Systems (2011).
  17. Sanmukh SG and Paunikar WN. Study of prophages in Lactobacillus species. CiiT International Journal of Automation and Autonomous System (2012).
  18. Sanmukh SG and Paunikar WN. Understanding Mycobacteriophages through their unrevealed proteins. CiiT International Journal of Fuzzy Systems (2012).
  19. Sanmukh SG and Paunikar WN. Yersinia Phages and their Novel Proteins. CiiT International Journal of Data Mining and Knowledge Engineering (2012).
  20. Sanmukh SG, Meshram DB, Paunikar WN, Ghosh TK. Computational characterizations for structure and function of unclassified proteins in Ictalurus punctatus. CiiT International Journal of Artificial Intelligent Systems and Machine Learning (2011).
  21. Sanmukh SG, Paunikar WN and Ghosh TK and Chakrabarti T. Structural and functional prediction of hypothetical proteins in Bacteriophages against Halophilic bacteria - An Insilico Approach. International Journal of Pharma and Biosciences (2011).
  22. Sanmukh SG, Paunikar WN and Ghosh TK. Study of Hypothetical Proteins in Salmonella Phages and Predicting their Structural and Functional Relationship. CiiT International Journal of Biometrics and Bioinformatics (2011).
  23. Sanmukh SG, Paunikar WN, Ghosh TK and Chakrabarti T. Structure and Function Predictions of Hypothetical Proteins in Vibrio Phages. International Journal of Biometrics and Bioinformatics. 4(5), pp 161-175 (2010).
  24. Sanmukh SG, Paunikar WN, Ghosh TK. Computational approach for structure and functionality search for hypothetical proteins in Mycobacterium leprae CiiT International Journal of Data Mining and Knowledge Engineering (2011).
  25. Sanmukh SG, Paunikar WN, Meshram DB and Ghosh TK. Functionality search in hypothetical proteins of Halobacterium salinarum CiiT International Journal of fuzzy Systems (2011).
  26. Sanmukh SG, Paunikar WN, Meshram DB and Ghosh TK. Insilico function prediction for hypothetical proteins in Vibrio parahaemolyticus Chromosome II. CiiT International Journal of Data Mining and Knowledge Engineering (2011).
  27. Sanmukh SG, Rahman M and Paunikar WN. Comparative Genomic Studies of hypothetical proteins in Cyanophages International Journal of Computer Applications. 45(15):16-33 (2012).
  28. Smith EF and Townsend C. A plant-tumor of bacterial origin. Science 25(643): 671-673(1907).
  29. WoodDW, Setubal JC, Kaul R, Monks DE, Kitajima JP, Okura VK, Zhou Y, Chen L, Wood GE, Almeida NF Jr, Woo L, Chen Y, Paulsen IT, Eisen JA, Karp PD, Bovee D Sr, Chapman P, Clendenning J, Deatherage G, Gillet W, Grant C, Kutyavin T, Levy R, Li MJ, McClelland E, Palmieri A, Raymond C, Rouse G, Saenphimmachak C, Wu Z, Romero P, Gordon D, Zhang S, Yoo H, Tao Y, Biddle P, Jung M, Krespan W, Perry M, Gordon-Kamm B, Liao L, Kim S, Hendrick C, Zhao ZY, Dolan M, Chumley F, Tingey SV, Tomb JF, Gordon MP,
  30. Yu CS, Lin CJ, et al. Predicting subcellular localization of proteins for Gram?negative bacteria by support vector machines based on n?peptide compositions. Protein Science 13(5): 1402-1406(2004).
  31. Zafer A, Yucel A, Mark B. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models, BMC Bioinformatics ,7, 178, (2006).
  32. Zdobnov EM, Rolf A. Interproscan- an integration platform for the signatures recognition methods in InterPro. Bioinformatics 17,847-848, (2001).
Index Terms

Computer Science
Information Sciences

Keywords

Unknown proteins Bioinformatics web tools protein databases tertiary structures functional characteristics.