CFP last date
20 January 2025
Reseach Article

Recognition of Isolated Printed Tifinagh Characters

by M. Oujaoura, B. Minaoui, M. Fakir, R. El Ayachi, O. Bencharef
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 85 - Number 1
Year of Publication: 2014
Authors: M. Oujaoura, B. Minaoui, M. Fakir, R. El Ayachi, O. Bencharef
10.5120/14802-3005

M. Oujaoura, B. Minaoui, M. Fakir, R. El Ayachi, O. Bencharef . Recognition of Isolated Printed Tifinagh Characters. International Journal of Computer Applications. 85, 1 ( January 2014), 1-13. DOI=10.5120/14802-3005

@article{ 10.5120/14802-3005,
author = { M. Oujaoura, B. Minaoui, M. Fakir, R. El Ayachi, O. Bencharef },
title = { Recognition of Isolated Printed Tifinagh Characters },
journal = { International Journal of Computer Applications },
issue_date = { January 2014 },
volume = { 85 },
number = { 1 },
month = { January },
year = { 2014 },
issn = { 0975-8887 },
pages = { 1-13 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume85/number1/14802-3005/ },
doi = { 10.5120/14802-3005 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:01:19.356371+05:30
%A M. Oujaoura
%A B. Minaoui
%A M. Fakir
%A R. El Ayachi
%A O. Bencharef
%T Recognition of Isolated Printed Tifinagh Characters
%J International Journal of Computer Applications
%@ 0975-8887
%V 85
%N 1
%P 1-13
%D 2014
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Most of the reported works in the field of character recognition systems achieve modest results by using a single method for calculating the parameters of the character image and a single approach in the classification phase of the system. So, in order to improve the recognition rate, this document proposes an automatic system to recognize isolated printed Tifinagh characters by using a fusion of some classifiers and a combination of some features extraction methods. The Legendre moments, Zernike moments, Hu moments, Walsh transform, GIST and texture are used as descriptors in the features extraction phase due to their invariance to translation, rotation and scaling changes. In the classification phase, the neural network, the Bayesian network, the multiclass SVM (Support Vector Machine) and the nearest neighbour classifiers are combined together. The experimental results of each single features extraction method with each single classification method are compared with our approach to show its robustness. A recognition rate of 100 % is achieved by using some combined descriptors and classifiers.

References
  1. Y. Es Saady, A. Rachidi, M. El Yassa, D. Mammass, « Printed Amazigh Character Recognition by a Syntactic Approach using Finite Automata », ICGST-GVIP Journal, Volume 10, Issue 2, June 2010.
  2. O. Bencharef, M. Fakir, N. Idrissi, B. Bouikhalen et B. Minaoui, « Application de la géométrie riemannienne à la reconnaissance des caractères Tifinaghe », Agadir-Maroc, 06-07 Mai 2011. pp : 179 :188.
  3. R. El Ayachi, K. Moro, M. Fakir et B. Bouikhalene, « On The Recognition Of Tifinaghe Scripts ». JATIT, vol. 20, No. 2, pp: 61-66, 2010.
  4. M. Amrouch, Y. Es saady, A. Rachidi,M. El Yassa and D. Mammass. Printed Amazigh Character Recognition by a Hybrid Approach Based on Hidden Markov Models and the Hough Transform, 978-1-4244-3757-3/09/$25. 00 ©2009 IEEE, 2009.
  5. M. OUJAOURA, R. EL AYACHI, O. BENCHAREF, Y. CHIHAB and B. JARMOUNI, application of data mining tools for recognition of tifinagh characters, (IJACSA) International Journal of Advanced Computer Science and Applications, special issue on selected papers from 3rd international symposium on automatic amazigh processing SITACAM13, Vol. 3, No. 2, pp. 1–4, 2013. Published by The Science and Information Organization, New York, USA.
  6. Mustapha OUJAOURA, Brahim MINAOUI and Mohammed FAKIR. Walsh, Texture and GIST Descriptors with Bayesian Networks for Recognition of Tifinagh characters. (IJCA) International Journal of Computer Applications, Volume 81– No. 12, pp. 39-46, November 2013. Published by Foundation of Computer Science, New York, USA.
  7. M. OUJAOURA, B. MINAOUI and M. FAKIR, Multilayer Neural Networks and Nearest Neighbor Classifier Performances for Image Annotation, (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 3, No. 11, pp. 165–171, 2012. Published by The Science and Information Organization, New York, USA.
  8. Yue Cao, Xiabi Liu, Jie Bing and Li Song, Using Neural Network to Combine Measures of Word Semantic Similarity for Image Annotation, IEEE International Conference on Information and Automation (ICIA), pp. 833 – 837, 2011.
  9. P. Simard, D. Steinkraus, J. C. Platt, Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis, ICDAR, 2003, pp. 958-962.
  10. R. Lepage, & B. Solaiman. Les réseaux de neurones artificiels et leurs applications en imagerie et en vision par ordinateur, Ecole de technologie supérieure, 2003.
  11. R. Rifkin, A. Klautau. In defence of one-versus-all classi?caiton. Journal of Machine Learning Research, Vol. 5, pp. 101–141, 2004.
  12. K. -B. Duan, S. S Keerthi, Which is the best multiclass SVM method? An empirical study. Technical Report CD-03-12, Control Division, Department of Mechanical Engineering, National University of Singapore, 2003.
  13. Oren Boiman, Eli Shechtman and Michal Irani, In Defense of Nearest-Neighbor Based Image Classification, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2008.
  14. Ann. Becker, Patrick Naim : les réseaux bayésiens : modèles graphiques de connaissance. Eyrolles. 1999.
  15. J. Pearl, "Bayesian Networks" UCLA Cognitive Systems Laboratory, Technical Report (R-216), Revision I. In M. Arbib (Ed. ), Handbook of Brain Theory and Neural Networks, MIT Press, 149-153, 1995.
  16. Sabine Barrat, Modèles graphiques probabilistes pour la reconnaissance de formes, thèse de l'université Nancy 2, Spécialité informatique, décembre 2009.
  17. George H. John and Pat Langley. Estimating continuous distributions in bayesian classifiers, the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995.
  18. Philippe LERAY, Réseaux bayésiens : apprentissage et modélisation de systèmes complexes, Habilitation A Diriger Les Recherches, Spécialité Informatique, Automatique et Traitement du Signal, Université de Rouen, novembre 2006.
  19. Patrick Naïm, Pierre Henri Wuillemin, Philippe Leray, Olivier pourret, Anna becker, Réseaux bayésiens, Eyrolles, 3ème édition, Paris, 2008.
  20. Tom . Mitchell: Generative and discriminative classifier: Naïve bayes and logistic regression. Machine learning. Draft 2010.
  21. M. OUJAOURA, B. MINAOUI, M. FAKIR, B. BOUIKHALENE, R. EL AYACHI and O. BENCHAREF, Invariant Descriptors and Classifiers Combination for Recognition of Isolated Printed Tifinagh Characters, (IJACSA) International Journal of Advanced Computer Science and Applications, special issue on selected papers from 3rd international symposium on automatic amazigh processing SITACAM13, Vol. 3, No. 2, pp. 22–28, 2013. Published by The Science and Information Organization, New York, USA.
  22. F. L. Alt, Digital Pattern Recognition by Moments, J. Assoc. Computing Machinery, Vol. 9, pp. 240-258, 1962.
  23. M. R. Teague, Image analysis via the general theory of moments, J. Opt. Soc. Amer. 70, pp. 920–930, 1980.
  24. Chee-Way Chonga, P. Raveendranb and R. Mukundan, Translation and scale invariants of Legendre moments, Pattern Recognition 37, pp. 119 – 129, 2004.
  25. Sun-Kyoo Hwang, Whoi-Yul Kim, A novel approach to the fast computation of Zernike moments, Pattern Recognition 39, pp. 2065 – 2076, 2006.
  26. A. Prata, W. V. T. Rusche, Algorithm for computation of Zernike polynomials expansion coef?cients, Appl. Opt. 28, pp. 749–754, 1989.
  27. Mustapha Oujaoura, Brahim Minaoui and Mohammed Fakir. Article: Image Annotation using Moments and Multilayer Neural Networks. IJCA Special Issue on Software Engineering, Databases and Expert Systems SEDEX (1): pp. 46-55, September 2012. Published by Foundation of Computer Science, New York, USA.
  28. C. W. Chong, P. Raveendran, R. Mukundan, A comparative analysis of algorithms for fast computation of Zernike moments, Pattern Recognition 36 (3) , pp. 731–742, 2003.
  29. R. Haralick, K. Shanmugan, et I. Dinstein. Textural features for image classification. IEEE Transactions on SMC, 3(6) : pp. 610–621, 1973.
  30. Aude Oliva and Antonio Torralba. Modeling the shape of the scene : A holistic representation of the spatial envelope. International Journal of Computer Vision, 42 : pp. 145–175, 2001.
  31. Aude Oliva , Antonio Torralba, Building the gist of a scene: the role of global image features in recognition, Progress in Brain Research, 2006.
  32. Hans G. Feichtinger, Thomas Strohmer: "Gabor Analysis and Algorithms", Birkhäuser, 1998.
  33. Olivier Augereau, Nicholas Journet, Jean-Philippe Domenger, "Reconnaissance et Extraction de Pièces d'identité : Une application industrielle à la détection de cartes d'identité et de passeports," 1re soumission à CIFED 2012, le 8 décembre 2011.
Index Terms

Computer Science
Information Sciences

Keywords

Recognition system Legendre moments Zernike moment Hu moments Texture GIST Walsh transform Neural Networks Bayesian Networks Multiclass SVM nearest neighbour classifier Tifinagh characters.