CFP last date
20 January 2025
Reseach Article

Entropy Generation in MHD Free Convective Boundary Layer Flow Past an Inclined Flat Plate Embedded in a Porous Medium with Hall Currents

by S. Das, B. C. Sarkar, R. N. Jana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 84 - Number 9
Year of Publication: 2013
Authors: S. Das, B. C. Sarkar, R. N. Jana
10.5120/14608-2875

S. Das, B. C. Sarkar, R. N. Jana . Entropy Generation in MHD Free Convective Boundary Layer Flow Past an Inclined Flat Plate Embedded in a Porous Medium with Hall Currents. International Journal of Computer Applications. 84, 9 ( December 2013), 36-46. DOI=10.5120/14608-2875

@article{ 10.5120/14608-2875,
author = { S. Das, B. C. Sarkar, R. N. Jana },
title = { Entropy Generation in MHD Free Convective Boundary Layer Flow Past an Inclined Flat Plate Embedded in a Porous Medium with Hall Currents },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 84 },
number = { 9 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 36-46 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume84/number9/14608-2875/ },
doi = { 10.5120/14608-2875 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:00:30.587054+05:30
%A S. Das
%A B. C. Sarkar
%A R. N. Jana
%T Entropy Generation in MHD Free Convective Boundary Layer Flow Past an Inclined Flat Plate Embedded in a Porous Medium with Hall Currents
%J International Journal of Computer Applications
%@ 0975-8887
%V 84
%N 9
%P 36-46
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

An analysis of entropy generation in an MHD boundary layer flow of a viscous incompressible electrically conducting fluid past an inclined flat plate embedded in a porous media in a rotating system with Hall currents has been presented. The governing equations describing the flow have been solved analytically. The velocity field, induced magnetic field, shear stress and bulk temperature in the boundary layer flow have been discussed with the help of graphs. The entropy generation is estimated via an analytical solution of the temperature and velocity profiles obtained from the momentum and energy equations governing the flow. The Bejan number is also obtained and discussed.

References
  1. Ghosh, S. K. and Pop, I. (2005). A new approach on MHD natural convection boundary layer flow past a flat plate of finite dimensions, Int. J. Heat Mass Transfer, 42: 587-595.
  2. Katagiri, M. (1969). The effect of Hall currents on the magnetohydrodynamic boundary layer flow past a semi-infinite flat plate, J. Phys. Soc. Jpn, 27: 1051-1059.
  3. Pop, I. , Watanabe, Y. (1995). Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate, Acta Mech. , 108:35-47.
  4. Fujii, T. , Imura, H. (1972). Natural convection heat transfer from a plate with arbitrary inclination, Int. J. Heat Mass Trans. , 15: 755.
  5. Kierkus, W. (1968). An analysis of laminar free convection flow and heat transfer about an inclined isothermal plate, Int. J. Heat Mass Trans. , 11: 241-253.
  6. Ganesan, P. , Palani, G. (2003). Natural convection effects on impulsively started inclined plate with heat and mass transfer, Int. J. Heat Mass Trans. , 39: 277-283.
  7. Moutsoglou, A. , Chen, T. S. (1980). Buoyancy effects in the boundary layers on inclined, continous, moving sheets, ASME J. Heat Trans. , 102: 371-373.
  8. Lewandowski, W. M. (1991). Natural convection heat transfer from plates of finite dimension, Int. J. Heat Mass Trans. , 34: 875-885.
  9. Bejan, A. (1980). Second law analysis in heat transfer, Energy Int. J. , 5: 721-732.
  10. Bejan, A. (1994). Entropy generation through heat and fluid flow, Wiley, Canada.
  11. Bejan, A. (1982). Second-law analysis in heat transfer and thermal design, Adv. Heat Transfer, 15: 1–58.
  12. Bejan, A. (1996). Entropy Generation Minimization, CRC Press: New York, USA.
  13. Bejan, A. (1979). A study of entropy generation in fundamental convective heat transfer, J. Heat Transfer, 101: 718-725.
  14. Bejan, A. (1996). Tsatsaronis, G. and Moran, M. , Thermal Design and Optimization; Wiley: New York, USA.
  15. Arpaci, V. S. and Selamet, A. (1988). Entropy production in flames, Combust. Flame, 73: 254-259.
  16. Arpaci, V. S. and Selamet, A. (1990). Entropy production in boundary layers, J. Thermophys. Heat Transfer, 4: 404-407.
  17. Arpaci, V. S. (1991). Radiative entropy production-Heat lost to entropy, Adv. Heat Transfer, 21: 239-276.
  18. Arpaci, V. S. (2001). Thermal deformation: From thermodynamics to heat transfer, J. Heat Transfer, 123: 821-826.
  19. Arpaci, V. S. and Esmaeeli, A. (2000). Radiative deformation, J. Appl. Phys. , 87: 3093-3100.
  20. Magherbi, M. , Abbassi, H. and Ben Brahim, A. (2003). Entropy generation at the onset of natural convection, Int. J. Heat Mass Transfer, 46: 3441-3450.
  21. Magherbi, M. , Abbassi, H. , Hidouri N. and Ben Brahim, A. (2006). Second law analysis in convective heat and mass transfer, Entropy, 8: 1–17.
  22. Abbassi, H. , Magherbi, M. and Ben Brahim, A. (2003). Entropy generation in Poiseuille-Benard channel flow, Int. J. Therm. Sci. , 42:1081-1088.
  23. Cimpean, D. and Pop I. (2011). A study of entropy generation minimization in an inclined channel, WSEAS Transactions on Heat and Mass Transfer, 6(2): 31-40.
  24. Chen, H. T. and Chen, C. K. (1988). Free convection flow of non-Newtonian fluids along a vertical plate embedded in porous medium, ASME J. Heat Tranfer. , 110: 257–260.
  25. Ghosh, S. K. , Bég, O. A. and Zueco, J. (2010). Hydromagnetic free convection flow with induced magnetic field effects, Meccanica, 45: 175–185.
  26. Jana, M. , Das, S. , Maji, S. L. , Jana, R. N. and Ghosh, S. K. (2012). Natural convection boundary layer flow past a flat plate of finite dimensions, J. Porous Media, 15(6): 585–593.
  27. Ahmed, N. and Kalita, D. (2011). Transient MHD free convection from an infinite vertical Porous plate in a rotating system with mass transfer and Hall current, J. Ener. Heat Mass Transfer, 33: 271- 292.
  28. Ahmed, N. , Talukdar, S. (2012). Transient magnetohydrodynamic (MHD) flow of a visco-elastic fluid past an infinite vertical porous plate embedded in a porous medium with Hall current and slip condition in a rotating system, Int. J. Physical Sci. , 7(45): 5942-5953.
  29. Das, S. , Sarkar, B. C. and Jana, R. N. (2013). Hall effect on MHD free convection boundary layer flow past a vertical flat plate, Meccanica, 48:1387-1398.
  30. Makinde, O. D. (2009). On MHD boundary-layer flow and mass transfer past a vertical plate in a porous medium with constant heat flux. Int. J. Num. Methods for Heat & Fluid Flow, 19(3/4): 546-554.
  31. Kumar, R. and Chand, K. (2011). Effect of slip conditions and hall current on unsteady MHD flow of a viscoelastic fluid past an infinite vertical porous plate through porous medium, Int. J. Eng. Sci. Tech. , 3(4):3124-3123.
  32. Makinde, O. D. (2012). Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition, Int. J. Exergy, 10(2): 142-154.
  33. Cowling, T. G. (1957). Magnetohydrodynamics, Interscience, New York.
  34. Cimpean, D. , Lungu, N. and Pop, I. (2008). A problem of entropy generation in a channel filled with a porous medium, Creative Math. and Inf. , 17: 357-362.
  35. Varol, Y. , Oztop, H. F. and Koca, A. , Entropy production due to free convection in partially heated isosceles triangular enclosures, Applied Thermal Engineering, 28: 1502-1513.
  36. Varol, Y. , Oztop, H. F. and Pop, I. (2008). Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall, Int. Comm. Heat Mass Transfer, 35: 56-64.
Index Terms

Computer Science
Information Sciences

Keywords

MHD boundary layer flow Hall currents Grashof number rotation parameter angle of inclination bulk temperature entropy generation rate Bejan number and porous medium.