CFP last date
20 January 2025
Reseach Article

Hall Effects on Unsteady MHD Flow Between Two Rotating Disks with Non-Coincident Parallel Axes Embedded in a Porous Medium

by S. Das, B. C. Sarkar, R. N. Jana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 84 - Number 6
Year of Publication: 2013
Authors: S. Das, B. C. Sarkar, R. N. Jana
10.5120/14578-2799

S. Das, B. C. Sarkar, R. N. Jana . Hall Effects on Unsteady MHD Flow Between Two Rotating Disks with Non-Coincident Parallel Axes Embedded in a Porous Medium. International Journal of Computer Applications. 84, 6 ( December 2013), 10-16. DOI=10.5120/14578-2799

@article{ 10.5120/14578-2799,
author = { S. Das, B. C. Sarkar, R. N. Jana },
title = { Hall Effects on Unsteady MHD Flow Between Two Rotating Disks with Non-Coincident Parallel Axes Embedded in a Porous Medium },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 84 },
number = { 6 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 10-16 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume84/number6/14578-2799/ },
doi = { 10.5120/14578-2799 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:00:11.777205+05:30
%A S. Das
%A B. C. Sarkar
%A R. N. Jana
%T Hall Effects on Unsteady MHD Flow Between Two Rotating Disks with Non-Coincident Parallel Axes Embedded in a Porous Medium
%J International Journal of Computer Applications
%@ 0975-8887
%V 84
%N 6
%P 10-16
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hall effects on an unsteady MHD flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes embedded in a porous medium have been studied. The governing equations have been solved analytically using the Laplace transform technique. The effects of rotation parameter, Hall parameter, Hartmann number and Darcy number have been considered on the flow characteristics and illustrated by graphs. It is observed that the velocity components are significantly affected by Hall parameter and Darcy number. The velocity components increase near the lower disk whereas they decrease near the upper disk with an increase in either rotation parameter of disk or rotation parameter of axis. Further, the torque experienced by the disks increases with an increase in either Hartmann number or rotation parameter while it decreases with an increase in either Hall parameter or Darcy number.

References
  1. Stewatson, K. (1953). On the flow between two rotating co-axial disks, Proc. Cambridge Phi. Soc. , 49: 533-541.
  2. Rott, N. and Lewellen, W. S. (1966). Boundary layer and their interactions in rotating flows, Prog. aeronaut. Sci. ,7:111-144.
  3. Mellor, G. L. , Chapple, P. J. and Stocks, V. K. (1968). On the flow betweena rotating and a stationary disk, J. Fluid Mech. , 31: 95-112.
  4. Erdogan, M. E. (1995). Unsteady viscous flow between eccentric disks, Int. J. Non-linear Mech. , 30: 711-717.
  5. Ersoy, H. V. (2003). Unsteady flow due to concentric rotation of ecentric rotating disks, Meceanica, 38: 325-334.
  6. Jana, R. N. , Jana, M. Das, S. , Maji, S. L. and Ghosh, S. K. (2011). Hydrodynamic flow between two non-coincident rotating disks embedded in porous media, World J. Mechanics, 1: 50-56.
  7. Mohanty, H. K. (1971). Hydromagnetic flow between two rotating disks with non-coincident parallel axes of rotation, Phys. Fluids, 15: 1456-1458.
  8. Guria, M. , Das, S. and Jana, R. N. (2007). Hall effects on unsteady flow of a viscous fluid due to non-coaxial rotation of a porous disk and a fluid at infinity, Int. J. Non-linear Mech. , 30:1204-1209.
  9. Guria, M. , Das, B. K. , Jana, R. N. and Imrak, C. E. (2008). Hydromagnetic flow between two porous disks rotating about non-coincident axes, Acta Mechanica Sinica, 24(5): 489-496.
  10. Sutton, G. and Sherman, A. (1965). Engineering Magnetohydrodynamics, McGraw-Hill, New York.
  11. Tillack, M. S. and Morley, N. B. (1998). Standard Handbook for Electrical Engineers: Magnetodynamics, McGraw-Hill, New York.
  12. Sato, H. (1961). The Hall effects in the viscous flow of ionized gas between parallel plates under transverse magnetic field, J. Phys. Soc. Jpn. , 16: 1427.
  13. Yamanishi,T. (1962). Preprint, 17th Annual meeting, Phys. Soc. Jpn. , Osaka.
  14. Sherman, A. and Sutton, G. W. (1965). Engineering Magnetohydrodynamics, McGraw-Hill,Inc, New York.
  15. Gupta, A. S. (1975). Hydromagnetic flow past a porous flat plate with Hall effects, Acta Mechanica, 22: 281-267.
  16. Datta, N. and Jana,R. N. (1976). Oscillatory magnetohydrodynanic flow past a flat plate with Hall effects, J. Phys. Soc. Jpn. , 40: 1469-1474.
  17. Datta, N. and Jana, R. N. (1977). Hall effects on hydromagnetic convective flow through a channel with conducting walls, Int. J. Engng Sci. , 15: 561.
  18. Jana, R. N. and Datta, N. (1977). Hall effects on unsteady Couette flow, Int. J. Engng Sci. , 15: 35.
  19. Kanch, A. K. and Jana, R. N. (1992). Hall effects on hydromagnetic flow between two rotating disks with non-coincident parallel axes of rotation, Rev. Roumsci. Tech. Mech. Appl. , 37: 379-385.
  20. Das, S. , Maji, S. L. , Guria, M. and Jana, R. N. (2010). Hall effects on unsteady MHD flow between two disks with non-coincident parallel axes of rotation, Int. J. Appl. Mech. Eng. , 15(1): 5-18.
  21. Barik, R. N. , Das, G. C. and Rath, P. K. (2013). Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. , 83(1) : 21-27.
  22. Cowling, T. G. (1957). Magnetohydrodynamics, Interscience Publisher, Inc, New York.
Index Terms

Computer Science
Information Sciences

Keywords

Hall effects Hartmann number rotation parameters rotating disks non-coincident porous medium