CFP last date
20 January 2025
Reseach Article

Convexity Preserving Interpolation by GC2-Rational Cubic Spline

by M. Dube, P. S. Rana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 84 - Number 4
Year of Publication: 2013
Authors: M. Dube, P. S. Rana
10.5120/14561-2685

M. Dube, P. S. Rana . Convexity Preserving Interpolation by GC2-Rational Cubic Spline. International Journal of Computer Applications. 84, 4 ( December 2013), 1-3. DOI=10.5120/14561-2685

@article{ 10.5120/14561-2685,
author = { M. Dube, P. S. Rana },
title = { Convexity Preserving Interpolation by GC2-Rational Cubic Spline },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 84 },
number = { 4 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-3 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume84/number4/14561-2685/ },
doi = { 10.5120/14561-2685 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:00:02.126179+05:30
%A M. Dube
%A P. S. Rana
%T Convexity Preserving Interpolation by GC2-Rational Cubic Spline
%J International Journal of Computer Applications
%@ 0975-8887
%V 84
%N 4
%P 1-3
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

A weighted rational cubic spline interpolation has been constructed using rational spline with quadratic denominator. GC1-piecewise rational cubic spline function involving parameters has been constructed which produces a monotonic interpolant to given monotonic data . The degree of smoothness of this spline is GC2 in the interpolating interval when the parameters satisfy a continuous system. It is observed that under certain conditions the interpolant preserve the convexity property of the data set. We have discussed the constrains for GC2-rational spline interpolant in section. Also the error estimate formula of this interpolation are obtained.

References
  1. Delbourgo, R. , Gregory, J. A. , Shape preserving piecewise rational interpolation, SIAM journal of scientific and statistical computing. 6(4)(1985), 967-976.
  2. Delbourgo, R. and Gregory, J. A. , The determination of derivative parameters for a monotonic rational quadratic interpolant, IMA J. Numer. Ana. 5(1985), 397-406.
  3. Duan, Q. , Wang, L. , Twizell, E. H. , A new weighted rational cubic interpolation and its approximation,, Appl. Math. Comput. , 2005, 168,pp. 990-1003.
  4. Dube, M. , Tiwari, P. , Convexity preserving C2 rational quadratic trigonometric spline, AIP conference proceeding, 1479(2012), 995-998.
  5. Foley, T. A. , Local control of interval tension using weighted spline, CAGD. 3(1986), 281-294.
  6. Sarfraz, M. , Curves and surfaces for computer aided design using C2 rational cubic spline , engineering with computers. 11(1995), 94-102.
  7. Sarfraz, M. , Butt, S. , Hussain,M. Z. , Interpolation for the positivity using rational cubics proceedings of ISOSS-IV, August 27- 31, Lahore, Pakistan. 8(1994), 251-261.
  8. Schultz, M. H. , Spline analysis, Prentice Hall, Englewood Cliffs, New Jersey
  9. .
Index Terms

Computer Science
Information Sciences

Keywords

Interpolation shape parameters monotonicity convexity approximation