CFP last date
20 January 2025
Reseach Article

A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences

by Gajendra Pratap Singh
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 84 - Number 16
Year of Publication: 2013
Authors: Gajendra Pratap Singh
10.5120/14657-2946

Gajendra Pratap Singh . A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences. International Journal of Computer Applications. 84, 16 ( December 2013), 1-7. DOI=10.5120/14657-2946

@article{ 10.5120/14657-2946,
author = { Gajendra Pratap Singh },
title = { A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 84 },
number = { 16 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-7 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume84/number16/14657-2946/ },
doi = { 10.5120/14657-2946 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T22:01:02.195550+05:30
%A Gajendra Pratap Singh
%T A Wheel 1-Safe Petri Net Generating all the {0; 1}^n Sequences
%J International Journal of Computer Applications
%@ 0975-8887
%V 84
%N 16
%P 1-7
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Petri nets are a graphic and mathematic modeling tool which is applicable to several systems and to all those systems presenting particular characteristics such as concurrency, distribution, parallelism, non-determinism and/or stochastically. In this paper, a wheel Petri net whose reachability tree contains all the binary n- tuples or sequences as marking vectors has been defined. The result is proved by the using of the Principle of Mathematical Induction (PMI) on jPj = n.

References
  1. Petri, C. A. , Kommunikation mit automaten, Schriften des Institutes fur Instrumentelle Mathematik, Bonn 1962.
  2. Kansal, S. , Acharya, M. and Singh, G. P. , Boolean Petri nets. In: Petri nets — Manufacturing and Computer Science (Ed. : Pawel Pawlewski), 381-406; Chapter 17. In-Tech Global Publisher, 2012, ISBN 978-953-51-0700-2.
  3. Kansal, S. , Singh, G. P. and Acharya, M. , On Petri nets generating all the binary n-vectors, Scientiae Mathematicae Japonicae, 71(2), 2010, 209-216.
  4. Peterson, J. L. , Petri net Theory and the Modeling of Systems, Englewood Cliffs, NJ: Prentice-Hall, Inc. , 1981.
  5. Harary, F. , Graph theory, Addison-Wesley, Massachusettes, Reading, 1969.
  6. Jensen, K. , Coloured Petri nets, Lecture notes in Computer Science, Springer-Verlag, Berlin, 254, 1986, 248-299.
  7. Reisig, W. , Petri nets, Springer-Verleg, New York, 1985.
  8. Murata, T. , Petri nets: Properties, analysis and applications, Proc. IEEE, 77(4), 1989, 541-580.
  9. Acharya, B. D. , Set-indexers of a graph and set-graceful graphs, Bull. Allahabad Math. Soc. , 16, 2001, 1-23.
Index Terms

Computer Science
Information Sciences

Keywords

1-safe Petri net reachability tree binary n-vector marking vector wheel graph