We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 November 2024
Reseach Article

Generalization of Semi-Projective Modules

by Manoj Kumar Patel, B. M. Pandeya, V. Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 83 - Number 8
Year of Publication: 2013
Authors: Manoj Kumar Patel, B. M. Pandeya, V. Kumar
10.5120/14465-2757

Manoj Kumar Patel, B. M. Pandeya, V. Kumar . Generalization of Semi-Projective Modules. International Journal of Computer Applications. 83, 8 ( December 2013), 1-6. DOI=10.5120/14465-2757

@article{ 10.5120/14465-2757,
author = { Manoj Kumar Patel, B. M. Pandeya, V. Kumar },
title = { Generalization of Semi-Projective Modules },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 83 },
number = { 8 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume83/number8/14465-2757/ },
doi = { 10.5120/14465-2757 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:59:44.556942+05:30
%A Manoj Kumar Patel
%A B. M. Pandeya
%A V. Kumar
%T Generalization of Semi-Projective Modules
%J International Journal of Computer Applications
%@ 0975-8887
%V 83
%N 8
%P 1-6
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper characterization of pseudo M-p-projective modules and quasi pseudo principally projective modules are given and discussed the various properties of it. It is proved that a pseudoM-pprojective module is Hopfian iff M=N is Hopfian, for each fully invariant small submodule N of M. It is also provided the sufficient condition for pseudo M-p-projective module to be discrete. Finally several equivalent conditions are given for a quasi pseudo principally projective module to have the finite exchange property.

References
  1. Birkenmeier, G. F. , Muller, B. J. , Rizvi, S. T. , (2002), Modules in which Every Fully Invariant Submodule is Essential in a Direct Summand, Comm. in Algebra, 30(3), 1395-1415.
  2. Chaturvedi, A. K. , Pandeya, B. M. , Gupta, A. J. , (2009), Quasi-pseudo principally injective modules, Algebra Colloquium, 16 : 3, 397-402.
  3. Clark, J. , Lomp, C. , Vanaja, N. , Wisbauer, R. , (2006), Lifting Modules. Suppliments and projectivity in module theory. Frontiers in Math. Boston: Birkhauser.
  4. Ganesan, L. , Vanaja, N. , (2007), Strongly discrete module, Comm. in Algebra, 35 : 897-913.
  5. Golan, J. S. , (1970), Characterization of Rings using Quasi projective Modules, Israel J. Math, 8, 34-38.
  6. Keskin, D. , (1998), Finite Direct sum of (D1)-Modules, Turkish Journal of Mathematics, 22, 85-91.
  7. Mohamed, S. H. , Muller, B. J. , (1990), Continuous and Discrete Module. Cambridge University Press.
  8. Nicholson, W. K. , (1977), Lifting Idempotents and Exchange Rings, Trans. American Mathematicl Society, Vol. 229, 269- 278.
  9. Pandeya, B. M. , Pandey, A. K. , (2002), Almost Perfect Ring and Directly Finite Module, Int. J. Math. Sci. , 1, No. 1-2, 111- 115.
  10. Patel, M. K. , Pandeya, B. M. , (2010), Quasi-Pseudo Principally Projective Modules, Proceeding of International Conference on Algebra and its Application, Narosa Publishing House Pvt. Ltd. New Delhi, India.
  11. Quynh, T. C. , (2011), On Pseudo semi-projective Modules, Turkish Journal of Mathematics, 35, 1-10.
  12. Sanh, N. V. , Shum, K. P. , Dhompongsa, S. and Wongwai, S. , (1999), On Quasi Principally Injective Modules, Algebra colloquium, 6:3, 269-276.
  13. Somchit C. , (2002), When is a Quasi-p-injective Module Continuous?, Southeast Asian Bulletin of Mathematics, 26 : 391- 394.
  14. Tansee, H. , and Wongwai, S. , (2002), A note on semi projective modules, Kyungpook Math Journal, 42 : 369-380.
  15. Tiwary, A. K. , Bharadwaj, P. C. and Pandeya, B. M. , (1982), Quotients of Pseudo Projective Modules, Bull. of The Ins. of mathematics Academia Sinica, Vol. 10, No. 4.
  16. Varadarajan, K. , (1997), Properties of Endomorphism Rings, Acta. Math. Hungar. , 74(1-2).
  17. Wisbauer, R. , (1991), Foundation of Module and Ring Theory, Gordon and Breach, London-tokyo.
Index Terms

Computer Science
Information Sciences

Keywords

PseudoM-p-projective module Discrete module Hollow module Finite exchange property.