CFP last date
20 January 2025
Reseach Article

Generalization of Semi-Projective Modules

by Manoj Kumar Patel, B. M. Pandeya, V. Kumar
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 83 - Number 8
Year of Publication: 2013
Authors: Manoj Kumar Patel, B. M. Pandeya, V. Kumar
10.5120/14465-2757

Manoj Kumar Patel, B. M. Pandeya, V. Kumar . Generalization of Semi-Projective Modules. International Journal of Computer Applications. 83, 8 ( December 2013), 1-6. DOI=10.5120/14465-2757

@article{ 10.5120/14465-2757,
author = { Manoj Kumar Patel, B. M. Pandeya, V. Kumar },
title = { Generalization of Semi-Projective Modules },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 83 },
number = { 8 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 1-6 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume83/number8/14465-2757/ },
doi = { 10.5120/14465-2757 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:59:44.556942+05:30
%A Manoj Kumar Patel
%A B. M. Pandeya
%A V. Kumar
%T Generalization of Semi-Projective Modules
%J International Journal of Computer Applications
%@ 0975-8887
%V 83
%N 8
%P 1-6
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

In this paper characterization of pseudo M-p-projective modules and quasi pseudo principally projective modules are given and discussed the various properties of it. It is proved that a pseudoM-pprojective module is Hopfian iff M=N is Hopfian, for each fully invariant small submodule N of M. It is also provided the sufficient condition for pseudo M-p-projective module to be discrete. Finally several equivalent conditions are given for a quasi pseudo principally projective module to have the finite exchange property.

References
  1. Birkenmeier, G. F. , Muller, B. J. , Rizvi, S. T. , (2002), Modules in which Every Fully Invariant Submodule is Essential in a Direct Summand, Comm. in Algebra, 30(3), 1395-1415.
  2. Chaturvedi, A. K. , Pandeya, B. M. , Gupta, A. J. , (2009), Quasi-pseudo principally injective modules, Algebra Colloquium, 16 : 3, 397-402.
  3. Clark, J. , Lomp, C. , Vanaja, N. , Wisbauer, R. , (2006), Lifting Modules. Suppliments and projectivity in module theory. Frontiers in Math. Boston: Birkhauser.
  4. Ganesan, L. , Vanaja, N. , (2007), Strongly discrete module, Comm. in Algebra, 35 : 897-913.
  5. Golan, J. S. , (1970), Characterization of Rings using Quasi projective Modules, Israel J. Math, 8, 34-38.
  6. Keskin, D. , (1998), Finite Direct sum of (D1)-Modules, Turkish Journal of Mathematics, 22, 85-91.
  7. Mohamed, S. H. , Muller, B. J. , (1990), Continuous and Discrete Module. Cambridge University Press.
  8. Nicholson, W. K. , (1977), Lifting Idempotents and Exchange Rings, Trans. American Mathematicl Society, Vol. 229, 269- 278.
  9. Pandeya, B. M. , Pandey, A. K. , (2002), Almost Perfect Ring and Directly Finite Module, Int. J. Math. Sci. , 1, No. 1-2, 111- 115.
  10. Patel, M. K. , Pandeya, B. M. , (2010), Quasi-Pseudo Principally Projective Modules, Proceeding of International Conference on Algebra and its Application, Narosa Publishing House Pvt. Ltd. New Delhi, India.
  11. Quynh, T. C. , (2011), On Pseudo semi-projective Modules, Turkish Journal of Mathematics, 35, 1-10.
  12. Sanh, N. V. , Shum, K. P. , Dhompongsa, S. and Wongwai, S. , (1999), On Quasi Principally Injective Modules, Algebra colloquium, 6:3, 269-276.
  13. Somchit C. , (2002), When is a Quasi-p-injective Module Continuous?, Southeast Asian Bulletin of Mathematics, 26 : 391- 394.
  14. Tansee, H. , and Wongwai, S. , (2002), A note on semi projective modules, Kyungpook Math Journal, 42 : 369-380.
  15. Tiwary, A. K. , Bharadwaj, P. C. and Pandeya, B. M. , (1982), Quotients of Pseudo Projective Modules, Bull. of The Ins. of mathematics Academia Sinica, Vol. 10, No. 4.
  16. Varadarajan, K. , (1997), Properties of Endomorphism Rings, Acta. Math. Hungar. , 74(1-2).
  17. Wisbauer, R. , (1991), Foundation of Module and Ring Theory, Gordon and Breach, London-tokyo.
Index Terms

Computer Science
Information Sciences

Keywords

PseudoM-p-projective module Discrete module Hollow module Finite exchange property.