CFP last date
20 January 2025
Reseach Article

Transmuted Generalized Linear Exponential Distribution

by I. Elbatal, L. S. Diab, N. A. Abdul Alim
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 83 - Number 17
Year of Publication: 2013
Authors: I. Elbatal, L. S. Diab, N. A. Abdul Alim
10.5120/14671-2681

I. Elbatal, L. S. Diab, N. A. Abdul Alim . Transmuted Generalized Linear Exponential Distribution. International Journal of Computer Applications. 83, 17 ( December 2013), 29-37. DOI=10.5120/14671-2681

@article{ 10.5120/14671-2681,
author = { I. Elbatal, L. S. Diab, N. A. Abdul Alim },
title = { Transmuted Generalized Linear Exponential Distribution },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 83 },
number = { 17 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 29-37 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume83/number17/14671-2681/ },
doi = { 10.5120/14671-2681 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:59:40.707706+05:30
%A I. Elbatal
%A L. S. Diab
%A N. A. Abdul Alim
%T Transmuted Generalized Linear Exponential Distribution
%J International Journal of Computer Applications
%@ 0975-8887
%V 83
%N 17
%P 29-37
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The linear exponential distribution is a very well-known distribution for modeling lifetime data in reliability and medical studies. We introduce in this paper a new four-parameter generalized version of the transmuted generalized linear exponential distribution. We provide a comprehensive account of the mathematical properties of the new distributions. In particular, A closed-form expressions for the density, cumulative distribution ,quantile and median of the distribution is given. Also, the rth order moment and moment generating function are derived. The maximum likelihood estimation of the unknown parameters is discussed. Real data are used to determine whether the TGLED is better than other well-known distributions in modeling lifetime data or not.

References
  1. Aarset, M. V. (1987). How to identify bathtub hazard rate. IEEE Transactions on Reliability R-36, 106 108.
  2. Abouammoh, A. , Abdulghani, S. , Qamber, I. (1994). On partial orderings and testing of new better than renewal used classes. Reliability Engineering andSystem Safety 43, 37 41.
  3. Aryal, G. R. and Tsokos, C. P. (2011). TransmutedWeibull distribution: A Generalization of theWeibull Probability Distribution. European Journal of Pure and Applied Mathematics, 4(2), 89- 102.
  4. Aryal. G. R. and Tsokos, C. P. (2009). On the transmuted extreme value distribution with applications. Nonlinear Analysis: Theory, Methods and applications, Vol. 71, 1401-1407.
  5. Aryal, G. R. (2013). Transmuted Log-Logistic Distribution. J. Stat. Appl. Pro. 2, No. 1, 11-20.
  6. Elbatal, I. ( 2013). Transmuted modified inverseWeibull Distribution: AGeneralization of the Modified inverse Weibull Probability Distribution. International Journal of Mathematical Archive-4(8), 117-129.
  7. Elbatal, I. and Aryal. G. R. . On the Transmuted AdditiveWeibull Distribution. Austrian Journal of Statistics (To Appear).
  8. Lai, C. D. , Xie, M. , Murthy, D. N. P. (2001). Bathtub shaped failure rate distributions. In: Balakrishnan, N. , Rao, C. R. (Eds. ), Handbook in Reliability, vol. 20. 69 104.
  9. Mahmoud, M. A. Wand Alam,F. (2010). The generalized linear exponential distribution, Statist. Probabil. Lett. 80 ,1005–1014.
  10. Merovci, F. and Elbatal, I. ( 2013). Transmuted lindley-Geometric distribution and its applications. Stat. ME. arXiv:1309:3774V1. (To submitted ).
  11. Muhammad, K. S. and Robert, K. ( 2013). Transmuted Modified Weibull Distribution: A Generalization of the Modified Weibull Probability Distribution. European Journal of Pure and Applied Mathematics. 6(1), 66-88.
  12. Shaw,W. and Buckley,I. (2007). The alchemy of probability distributions: beyond Gram- Charlier expansions and a skewkurtotic- normal distribution from a rank transmutation map.
  13. Zhang,T , Xie, M,Tang,L and Ng,S (2005) Reliability and Modeling of Systems Integrated with Firmware and hardware, Int. J. Reliab. Quality Safety Eng. 12 (3), 227–239.
Index Terms

Computer Science
Information Sciences

Keywords

Transmuted generalized linear exponential distribution quantile and median Maximum likelihood estimation Moments.