CFP last date
20 January 2025
Reseach Article

Hall Effects on Unsteady Rotating MHD Flow Through Porous Channel with Variable Pressure Gradient

by S. Das, H. K. Mandal, R. N. Jana
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 83 - Number 1
Year of Publication: 2013
Authors: S. Das, H. K. Mandal, R. N. Jana
10.5120/14410-2492

S. Das, H. K. Mandal, R. N. Jana . Hall Effects on Unsteady Rotating MHD Flow Through Porous Channel with Variable Pressure Gradient. International Journal of Computer Applications. 83, 1 ( December 2013), 7-18. DOI=10.5120/14410-2492

@article{ 10.5120/14410-2492,
author = { S. Das, H. K. Mandal, R. N. Jana },
title = { Hall Effects on Unsteady Rotating MHD Flow Through Porous Channel with Variable Pressure Gradient },
journal = { International Journal of Computer Applications },
issue_date = { December 2013 },
volume = { 83 },
number = { 1 },
month = { December },
year = { 2013 },
issn = { 0975-8887 },
pages = { 7-18 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume83/number1/14410-2492/ },
doi = { 10.5120/14410-2492 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:58:14.596351+05:30
%A S. Das
%A H. K. Mandal
%A R. N. Jana
%T Hall Effects on Unsteady Rotating MHD Flow Through Porous Channel with Variable Pressure Gradient
%J International Journal of Computer Applications
%@ 0975-8887
%V 83
%N 1
%P 7-18
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Hall effects on an unsteady MHD flow of a viscous incompressible electrically conducting fluid in a horizontal porous channel with variable pressure gradient in a rotating system have been studied. We have considered three different cases (i) impulsive change of pressure gradient (ii) cosine oscillations of pressure gradient and (iii) sine oscillations of pressure gradient. The governing equations are solved analytically using the Laplace transform technique. It is found that interplay of Coriolis force and hydromagnetic force in the presence of pressure gradient and Hall currents plays an important role in characterizing the flow behavior. Effects of the parameters of these forces on the velocity distributions and shear stresses have been depicted graphically and discussed. It is found that the primary velocity increases with an increase in Hall parameter for the impulsive change, cosine and sine oscillations of the pressure gradient. The secondary velocity increases for the impulsive change and cosine oscillations of the pressure gradient while it decreases for sine oscillations of the pressure gradient with an increase in Hall parameter. Further, the shear stress due to the primary flow at the lower wall reduces for both the impulsive change and cosine oscillations of the pressure gradient whereas it increases for sine oscillations of the pressure gradient with an increase in Hall parameter.

References
  1. Hide, R. and Roberts, P. H. (1961). The origin of the mean geomagnetic field, in: Physics and Chemistry of the Earth, vol. 4, Pergamon Press, New York, pp. 27–98.
  2. Dieke, R. H. (1970). Internal rotation of the sun, in: L. Goldberg (Ed. ), Annual Reviews of Astronomy and Astrophysics, vol. 8, Annual Reviews Inc, pp. 297–328.
  3. Sutton, G. W. and Sherman, A. (1965). Engineering Magnetohydrodynamics. McGraw-Hill, New York.
  4. Sato, H. (1961). The Hall effects in the viscous flow of ionized gas between parallel plates under transverse magnetic field, J. Phys. Soc. Japn. , 16: 14-27.
  5. Nanda, R. S. , Mohanty, H. K. (1970). Hydromagnetic rotating channel flows, Appl. Sci. Res. , A 24: 65–75.
  6. Datta, N. and Jana, R. N. (1977). Hall effects on unsteady Couette flow, Int. J. Engng. Sci. , 15: 35-43.
  7. Datta, N. and Jana, R. N. (1977). Hall effects on hydromagnetic convective flow through a channel with conducting walls, Int. J. Eng. Sci. , 15: 561.
  8. Mandal, G. , Mandal, K. K. and Choudhury, G. (1982). On combined effects of Coriolis force and Hall current on steady MHD Couette flow and heat transfer, J. Phys. Soc. Japan, 51: 2010-2015.
  9. Mandal, G. and Mandal, K. K. (1983). Effects of Hall current on MHD Couette flow between thick arbitrarily conducting plates in a rotating system, J. Phys. Soc. Japan, 52:470.
  10. Ghosh SK (1993). Unsteady hydromagnetic flow in a rotating channel with oscillating pressure gradient, J. Phys. Soc. Jpn, 62: 3893-3903.
  11. Nagy, T. and Demandy, Z. (1995). Effects of Hall currents and Coriolis force on Hartmann flow under general wall conditions, Acta Mechanica, 113: 77-91.
  12. Kanch, A. K. and Jana, R. N. (2001). Hall effect on unsteady Couette flow under boundary layer approximations, J. Physical Sciences, 7: 74-86.
  13. Ghosh, S. K. (2002). Effects of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field, Czech. J. Phys. , 52: 51-63.
  14. Ghosh, S. K. and Pop, I. (2004). Hall effects on MHD plasma Couette flow in a rotating environment, Int. J. Applied Mech. Eng. , 9(2): 293-305.
  15. Ghosh, S. K. (2002): Effects of Hall current on MHD Couette flow in a rotating system with arbitrary magnetic field, Czech. J. Phys. , 52(1): 51-63.
  16. Guria, M. and Jana, R. N. (2007). Hall effects on the hydromagnetic convective flow through a rotating channel under general wall conditions, Magnetohydrodynamics, 43(3): 287-300.
  17. Attia, H. A. (2009). Ion Slip effects on unsteady Couette flow with heat transfer under exponential decaying pressure gradient, Tamkang Journal and Engineering, 12(2): 209-214.
  18. Seth, G. S. , Nandkeolyar, R. and Ansari, Md. S. (2009). Hall effects on oscillatory hydromagnetic Couette flow in a rotating system, Int. J. Acad. Res. 1: 6.
  19. Chauhan, D. S. and Rastogi, P. (2009). Hall current and heat transfer effects on MHD flow in a channel partially filled with a porous medium in a rotating system, Turkish J. Eng. Env. Sci. , 33:167-184.
  20. Chauhan, D. S. and Agrawal, R. (2010). Effects of Hall current on MHD flow in a rotating channel partially filled with a porous medium, Chemical Engineering Communications, 197(6) :830-845.
  21. Jha, B. K. and Apere, C. A. (2010). Combined effects of Hall current and ion-slip current on unsteady MHD Couette flow in a rotating system, J. Physical Society of Japan, 79(10): 104401(1-9).
  22. Guchhait, S. K. , Das, S. , Jana, R. N. and Ghosh, S. K. (2011). Combined effects of Hall current and rotation on unsteady Couette flow in a porous channel, World Journal of Mechanics, 1: 87-99.
  23. Das, S. , Sarkar, B. C. and Jana, R. N. (2011). Hall effects on MHD Couette flow in rotating system, Int. J. Com. Appl. , 35(13): 22-30
  24. Ghara, N. , Maji, S. L. , Das, S. , Jana, R. N. and Ghosh, S. K. (2012). Effects of Hall current and ion-slip on unsteady MHD Couette flow, Open Journal of Fluid Dynamics, 2: 1-13.
  25. Seth, G. S. , Nandkeolyar, R. and Ansari, Md. S. (2012): Effects of Hall current and rotation on unteady MHD Couette flow in the presence of an inclined magnetic field, J. Applied Fluid Mechanics, 5(2): 67-74.
  26. Chauhan, D. S. and Agrawal, R. (2012). Effects of hall current on MHD Couette flow in a channel partially filled with a porous medium in a rotating system, Meccanica, 47: 405-421.
  27. Sarkar, B. C. , Das, S. and Jana, R. N. (2013). Combined effects of Hall currents and rotation on steady hydromagnetic Couette flow, Research Journal of Applied Sciences, Engineering and Technology, 5(6): 1864-1875.
  28. Nadeem, S. , Akbar, N. S. and Malik, M. Y. (2010). Numerical solutions of peristaltic flow of a newtonian fluid under the effects ofmagnetic field and heat transfer in a porous concentric tubes, Zeitschrift fur Naturforschung, 65a(5): 369-380.
  29. Nadeem, S. and Akbar, N. S. (2011). Influence of heat transfer and variable viscosity in vertical porous annulus with peristalsis, Journal of Porous Media, 14: 849-863.
  30. Nadeem, S. , Akbar, N. S. , Hayat, T. and Hendi, A. A. (2012). Influence of heat and mass transfer on Newtonian biomagnetic fluid of blood flow through a tapered porous arteries with a stenosis, Transport in Porous Media, 91: 81-100.
  31. Akbar, N. S. and Nadeem, S. (2012). Simulation of variable viscosity and Jeffrey fluid model for blood flow through a tapered artery with a stenosis, Communications in Theoretical Physics, 57: 133-140.
  32. Akbar, N. S. and Nadeem, S. (2012). Analytical and numerical analysis of Vogel's model of viscosity on the peristaltic flow of Jeffrey fluid, Journal of Aerospace Engineering, 25: 64-71.
  33. Cowling, T. G. , Magnetohydrodynamics, New York, Intersscience, 1957.
Index Terms

Computer Science
Information Sciences

Keywords

MHD flow Hall currents rotation parameter Reynolds number frequency parameter pressure gradient impulsive change cosine oscillations and sine oscillations