CFP last date
20 January 2025
Reseach Article

Accelerate the Face Detection Optimization with Edge detection and the Discrete Cosine Transform (DCT)

by Javad Haddadnia, Mojtaba Farzaneh, Armin Parsian Nejad
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 82 - Number 2
Year of Publication: 2013
Authors: Javad Haddadnia, Mojtaba Farzaneh, Armin Parsian Nejad
10.5120/14086-1197

Javad Haddadnia, Mojtaba Farzaneh, Armin Parsian Nejad . Accelerate the Face Detection Optimization with Edge detection and the Discrete Cosine Transform (DCT). International Journal of Computer Applications. 82, 2 ( November 2013), 12-14. DOI=10.5120/14086-1197

@article{ 10.5120/14086-1197,
author = { Javad Haddadnia, Mojtaba Farzaneh, Armin Parsian Nejad },
title = { Accelerate the Face Detection Optimization with Edge detection and the Discrete Cosine Transform (DCT) },
journal = { International Journal of Computer Applications },
issue_date = { November 2013 },
volume = { 82 },
number = { 2 },
month = { November },
year = { 2013 },
issn = { 0975-8887 },
pages = { 12-14 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume82/number2/14086-1197/ },
doi = { 10.5120/14086-1197 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:56:42.882772+05:30
%A Javad Haddadnia
%A Mojtaba Farzaneh
%A Armin Parsian Nejad
%T Accelerate the Face Detection Optimization with Edge detection and the Discrete Cosine Transform (DCT)
%J International Journal of Computer Applications
%@ 0975-8887
%V 82
%N 2
%P 12-14
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

This study presents a new method for accelerating and optimizing face detection, while preserving a high level of accuracy. This method uses local features that are extracted using block-base discrete cosine transform (DCT). This study uses edge detection method for face recognition with ICA algorithms. The technique used for edge detection is Laplacian of Gaussian (LOG). To find objects, face position and local information the discrete cosine transform is used. Here the main idea is edge detection and finding face position in the picture for DCT processing. Edge detection was applied for accelerating image processing. In this paper we use Cohn-Kanade AU-Coded Facial Expression Database.

References
  1. R. Gottumukkal, V. K. Asari, ?An Improved Face Recognition Technique Based On Modular Pca Approach?,Pattern Recognition Letters, 25(4), 2004.
  2. B. Heisele Et Al, ?Face Recognition: Component-Based Versus Global Approaches?, Computer Vision And Image Understanding, 91:6-21, 2003
  3. T. Kim Et Al, ?Component-Based Lda Face Description For Image Retrieval And Mpeg-7 Standardisation?, Image And Vision Computing, 23(7):631-642, 2005.
  4. A. Pentland, B. Moghaddam, T. Starner And M. Turk,?View Based And Modular Eigenspaces For Face Recognition?, Proceedings Of Ieee Cvpr, Pp. 84-91, 1994.
  5. Vijay, B. , and A. Nagabhushana Rao. "Analysis Of Face Recognition-A Case Study On Feature Selection And Feature Normalization. " Analysis 3. 3 (2013): 971-979.
  6. Brunelli, Roberto, and Tomaso Poggio. "Face recognition: Features versus templates. " Pattern Analysis and Machine Intelligence, IEEE Transactions on 15. 10 (1993): 1042-1052.
  7. Ahmed, Nasir, T. Natarajan, and Kamisetty R. Rao. "Discrete cosine transform. " Computers, IEEE Transactions on 100. 1 (1974): 90-93.
  8. Van Dokkum, Pieter G. "Cosmic?Ray Rejection by Laplacian Edge Detection. " Publications of the Astronomical Society of the Pacific 113. 789 (2001): 1420-1427.
  9. Karande, Kailash Jagannath, and Sanjay Nilkanth Talbar. "Laplacian of Gaussian Edge Detection for Face Recognition Using ICA. " Independent Component Analysis of Edge Information for Face Recognition. Springer India, 2014. 35-47.
  10. Dollár, Piotr, et al. "Behavior recognition via sparse spatio-temporal features. " Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005. 2nd Joint IEEE International Workshop on. IEEE, 2005.
  11. Yang, Ming-Hsuan, David J. Kriegman, and Narendra Ahuja. "Detecting faces in images: A survey. " Pattern Analysis and Machine Intelligence, IEEE Transactions on 24. 1 (2002): 34-58.
  12. Jain, Ramesh, Rangachar Kasturi, and Brian G. Schunck. Machine vision. Vol. 5. New York: McGraw-Hill, 1995.
  13. Canny, John. "A computational approach to edge detection. " Pattern Analysis and Machine Intelligence, IEEE Transactions on 6 (1986): 679-698.
  14. Pernebo, Lars. "An algebraic theory for design of controllers for linear multivariable systems--Part I: Structure matrices and feedforward design. " Automatic Control, IEEE Transactions on 26. 1 (1981): 171-182.
  15. Celler, Frank, et al. "Generating random elements of a finite group. " Communications in algebra 23. 13 (1995): 4931-4948.
  16. Lukáš, Jan, and Jessica Fridrich. "Estimation of primary quantization matrix in double compressed JPEG images. " Proc. Digital Forensic Research Workshop. 2003.
  17. Srisuk, Sanun. "Robust Face Recognition Based On Texture Analysis. " Int J Adv Robotic Sy 10. 47 (2013).
  18. Vijay, B. , and A. Nagabhushana Rao. "Analysis Of Face Recognition-A Case Study On Feature Selection And Feature Normalization. " Analysis 3. 3 (2013): 971-979.
  19. Ahmed, Nasir, T. Natarajan, and Kamisetty R. Rao. "Discrete cosine transform. " Computers, IEEE Transactions on 100. 1 (1974): 90-93.
  20. Lee, Byeong. "A new algorithm to compute the discrete cosine transform. " Acoustics, Speech and Signal Processing, IEEE Transactions on 32. 6 (1984): 1243-1245.
Index Terms

Computer Science
Information Sciences

Keywords

Face Detection DCT Edge detection image processing LOG.