We apologize for a recent technical issue with our email system, which temporarily affected account activations. Accounts have now been activated. Authors may proceed with paper submissions. PhDFocusTM
CFP last date
20 December 2024
Reseach Article

An Efficient Supervised Approach for Retinal Person Identification using Zernike Moments

by Shubhra Aich, G M Al Mamun
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 81 - Number 7
Year of Publication: 2013
Authors: Shubhra Aich, G M Al Mamun
10.5120/14028-2375

Shubhra Aich, G M Al Mamun . An Efficient Supervised Approach for Retinal Person Identification using Zernike Moments. International Journal of Computer Applications. 81, 7 ( November 2013), 38-45. DOI=10.5120/14028-2375

@article{ 10.5120/14028-2375,
author = { Shubhra Aich, G M Al Mamun },
title = { An Efficient Supervised Approach for Retinal Person Identification using Zernike Moments },
journal = { International Journal of Computer Applications },
issue_date = { November 2013 },
volume = { 81 },
number = { 7 },
month = { November },
year = { 2013 },
issn = { 0975-8887 },
pages = { 38-45 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume81/number7/14028-2375/ },
doi = { 10.5120/14028-2375 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T21:55:30.435745+05:30
%A Shubhra Aich
%A G M Al Mamun
%T An Efficient Supervised Approach for Retinal Person Identification using Zernike Moments
%J International Journal of Computer Applications
%@ 0975-8887
%V 81
%N 7
%P 38-45
%D 2013
%I Foundation of Computer Science (FCS), NY, USA
Abstract

Zernike moments map images using orthogonal basis functions. These moments have the advantages of rotation invariance, robustness and minimum information redundancy. In this paper, we focus on distinguishable pattern analysis of the retinal fundus images for person identification using Zernike moments. These moments are used to form 11-D feature vectors and k-nearest neighbor (kNN) classifier is used for person identification on publicly available DRIVE and STARE databases. This method outperforms all the existing methods with accuracy of 100% and 98. 64% on DRIVE and STARE databases respectively. Its smaller dimension of feature vector, simplicity and robustness make this method suitable for real-time retinal person identification scheme.

References
  1. A. K. Jain, A. Ross and S. Prabhakar, "An introduction to biometric recognition," IEEE Trans. Circuits Syst. Video Techn. , vol. 14, no. 1, pp 4-20, Jan 2004.
  2. P. Tower, "The fundus oculi in monozygotic twins: report of six pairs of identical twins," Archives of Ophthalmology,vol. 54, no. 2, pp 225-239, 1955 .
  3. M. Pabitha and L. Latha, "Efficient approach for retinal biometric template security and person authentication using noninvertible constructions," Int, J. Computer Applications, vol. 69, no. 4, pp 28-34, May 2013.
  4. R. S. Choras, "Retina recognition for biometrics," ICIDM, Langkawi, Malaysia, 2012, pp 177-180.
  5. M. U. Akram, A. Tariq and S. A. Khan, "Retinal recognition: Personal identification using blood vessels," ICITST, Abu Dhabi, UAE, 2011, pp 180-184.
  6. S. Qamber, Z. Waheed and M. U. Akram, "Person identification system based on vascular pattern of human retina," CIBEC, Cairo, Egypt, 2012, pp 64-67.
  7. W. Barkhoda, F. Akhlaqian, M. D. Amiri and M. S. Nouroozzadeh, "Retina identification based on the pattern of blood vessels using fuzzy logic," EURASIP J. Adv. Sig. Proc. 2011:113(2011).
  8. H. Farzin, H. Abrishami-Moghaddam and M. S. Moin, "A novel retinal identification system," Hindawi Publ. Corp. , EURASIP J. Adv. Sig. Proc. , vol. 2008.
  9. M. Sabaghi, S. R. Hadianamrei, M. Fattahi and M. R. Kouchaki and A. Zahedi, "Retinal identification system based on the combination of Fourier and Wavelet transform," J. Sig. Info. Proc. , pp 35-38, 2012.
  10. M. Shahnazi, M. Pahlevanzadeh and M. Vafadoost, "Wavelet based retinal recognition," ISSPA, Sharjah, UAE, 2007, pp 1-4.
  11. H. Tabatabaee, A. M. Fard and H. Jafiriani, "A novel human identifier system using retina image and fuzzy clustering," ICTTA, Damascus, Syria, 2006, pp 1031-1036.
  12. S. N. Kakarwal and R. R. Deshmukh, "Analysis of retina recognition by correlation and covariance matrix," ICETET, Goa, India, 2010, pp 496-499.
  13. T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin and J. C. Klein, "Automatic detection of microaneurysms in color fundus images," Med. Imag. Anal. , vol. 11, pp 555-566, 2007.
  14. D. Marin, A. Aquino, M. E. Gegundez-Arias and J. M. Bravo, "A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features," IEEE Trans. Med. Imag. , vol. 30, no. 1, pp 146-158, Jan 2011.
  15. M. R. Teague, "Image analysis via the general theory of moments," J. Opt. Soc. Am. , vol. 70, no. 8, pp 920-930, Aug 1980.
  16. A. Khotanzad and Y. H. Hong, "Rotation invariant pattern recognition using Zernike moments," ICPR, Cambridge, UK, 1988, pp 326-328.
  17. DRIVE database [online]. Available: http://www. isi. uu. nl/Research/Databases/DRIVE/
  18. STARE database [online]. Available: http://www. parl. clemson. edu/~ahoover/stare/index. html
Index Terms

Computer Science
Information Sciences

Keywords

Zernike moments rotation invariance retinal biometrics kNN classifier person identification.